仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

拉曼光谱电化学表征单壁碳纳米管

瑞士万通中国 2020-11-13 09:32:27 1028  浏览
  • 导语

    单壁碳纳米管是结构最简单的碳纳米管,具有独特的电学、光学和机械性能。在微电子器件和纳米复合材料等领域具有广阔的应用前景。单壁碳纳米管的拉曼光谱具有数个特征峰,可用于定量或定性表征单壁碳纳米管样品的直径、导电性、无序度与缺陷等。

    光谱电化学是一种多响应技术,可以在单个实验中同时提供电化学和光谱信息。下面我们来看看使用瑞士万通SPELEC RAMAN表征不同电位下的单壁碳纳米管的情况。

    SPELEC RAMAN和经单壁碳纳米管修饰的丝网印刷电极(SPE)

    实验与方法

    我们首先使用带有785nm激光的SPELEC RAMAN表征单壁碳纳米管(DRP-110SWCNT)。

    图1 DRP-110SWCNT的拉曼光谱图

    通过图1我们可以清晰的看到四个主要的谱带,分别是:径向呼吸模(RBM)、D模、G模和G’模。其中RBM位于(120~300)cm-1之间,主要提供纳米管的尺寸信息,两者之间的关系遵循以下公式:

    其中A(nm cm-1)和B(cm-1)通常为半经验值,分别为(220~230)nm cm-1和(10~20)cm-1。我们根据图1中关于RBM的插图,可以计算出其直径为别为1.55nm、1.19nm、1.07nm、和0.92nm。

    接下来,我们为研究体系施加电化学信号,表征不同电位下的光谱图。我们由0.00V至+1.00V分别正向和反向扫描,图2展示了G模在不同电位下的变化。

    图2 0.00V至+1.00V不同电位下G模的拉曼谱图

    通过图2我们可以发现,0.00V至+1.00V的电位范围下,G模的拉曼强度会有比较明显的变化,且反向扫描后的强度可以返回到初始强度值,但G模的位置并未发生变化。

    随着电位的继续加大,直至+1.80V,我们又得到下图。图3展示了G模在更宽的电位变化下的拉曼谱图。

    图3 0.00V至+1.80V不同电位下G模的拉曼谱图

    随着电位的继续加大,我们发现G模在反向扫描后无法回复到初始值,且发生了位移。通常,我们会用ID/IG的比值来评价碳纳米管的缺陷程度。上述实验表明了ID/IG的比值会随着正电位的变化而变化。结果说明单壁碳纳米管在+1.80V时会比+1.00V产生更多的缺陷。

    图4 不同电位下ID/IG的比值

    结论

    由于拉曼信号的共振增强,拉曼光谱法是表征单壁碳纳米管的ZJ方法之一。此外,光谱电化学是研究动态系统的有力技术。拉曼光谱法和电化学的结合为评估单壁碳纳米管的结构提供了重要的信息。

    应用领域

    材料表征

    新材料开发

    腐蚀研究

    电池测试

    瑞士万通SPELEC RAMAN是市场上shou台组合型电化学拉曼光谱仪。仪器内部集成了激光器、双恒电位/恒电流仪,以及一台光谱仪。为您的交叉学科研究提供强有力的分析手段。

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

拉曼光谱电化学表征单壁碳纳米管

导语

单壁碳纳米管是结构最简单的碳纳米管,具有独特的电学、光学和机械性能。在微电子器件和纳米复合材料等领域具有广阔的应用前景。单壁碳纳米管的拉曼光谱具有数个特征峰,可用于定量或定性表征单壁碳纳米管样品的直径、导电性、无序度与缺陷等。

光谱电化学是一种多响应技术,可以在单个实验中同时提供电化学和光谱信息。下面我们来看看使用瑞士万通SPELEC RAMAN表征不同电位下的单壁碳纳米管的情况。

SPELEC RAMAN和经单壁碳纳米管修饰的丝网印刷电极(SPE)

实验与方法

我们首先使用带有785nm激光的SPELEC RAMAN表征单壁碳纳米管(DRP-110SWCNT)。

图1 DRP-110SWCNT的拉曼光谱图

通过图1我们可以清晰的看到四个主要的谱带,分别是:径向呼吸模(RBM)、D模、G模和G’模。其中RBM位于(120~300)cm-1之间,主要提供纳米管的尺寸信息,两者之间的关系遵循以下公式:

其中A(nm cm-1)和B(cm-1)通常为半经验值,分别为(220~230)nm cm-1和(10~20)cm-1。我们根据图1中关于RBM的插图,可以计算出其直径为别为1.55nm、1.19nm、1.07nm、和0.92nm。

接下来,我们为研究体系施加电化学信号,表征不同电位下的光谱图。我们由0.00V至+1.00V分别正向和反向扫描,图2展示了G模在不同电位下的变化。

图2 0.00V至+1.00V不同电位下G模的拉曼谱图

通过图2我们可以发现,0.00V至+1.00V的电位范围下,G模的拉曼强度会有比较明显的变化,且反向扫描后的强度可以返回到初始强度值,但G模的位置并未发生变化。

随着电位的继续加大,直至+1.80V,我们又得到下图。图3展示了G模在更宽的电位变化下的拉曼谱图。

图3 0.00V至+1.80V不同电位下G模的拉曼谱图

随着电位的继续加大,我们发现G模在反向扫描后无法回复到初始值,且发生了位移。通常,我们会用ID/IG的比值来评价碳纳米管的缺陷程度。上述实验表明了ID/IG的比值会随着正电位的变化而变化。结果说明单壁碳纳米管在+1.80V时会比+1.00V产生更多的缺陷。

图4 不同电位下ID/IG的比值

结论

由于拉曼信号的共振增强,拉曼光谱法是表征单壁碳纳米管的ZJ方法之一。此外,光谱电化学是研究动态系统的有力技术。拉曼光谱法和电化学的结合为评估单壁碳纳米管的结构提供了重要的信息。

应用领域

材料表征

新材料开发

腐蚀研究

电池测试

瑞士万通SPELEC RAMAN是市场上shou台组合型电化学拉曼光谱仪。仪器内部集成了激光器、双恒电位/恒电流仪,以及一台光谱仪。为您的交叉学科研究提供强有力的分析手段。

2020-11-13 09:32:27 1028 0
纯化后的单壁碳纳米管纯度为多少
 
2017-04-19 12:24:06 342 1
多层石墨烯的拉曼光谱表征

引言:

       石墨烯是sp2碳原子紧密堆积形成的六边形蜂窝状结构二维原子晶体,具有高电导率和热导率、高载流子迁移率、自由的电子移动空间、高强度和刚度等优势,将在微纳电子器件、光电检测与转换材料、结构和功能增强复合材料及储能等广阔的领域得到应用;在半导体产业、光伏产业、锂离子电池、航天、、新一代显示器等传统领域和新兴领域都将带来革命性的技术进步,一旦量产必将成为下一个万亿级的产业。

       然而,石墨烯物理性质研究和器件应用的快速发展对材料的制备和表征提出了新的要求,自从石墨烯发现以来,各种表征方法被广泛地用于石墨烯材料的研究。拉曼光谱是一种快速无损的表征材料晶体结构、电子能带结构、声子能量色散和电子-声子耦合的重要的技术手段,具有较高的分辨率,是富勒烯、碳纳米管、金刚石研究中受欢迎的表征技术之一,在碳材料的发展历程中起到了至关重要的作用。利用拉曼分析我们可以判断石墨烯层数、堆落方式、权限、边缘结构、张力和掺杂状态等结构和性质。
       本文利用拉曼光谱研究了多层石墨烯的拉曼光谱,并基于石墨材料的共振拉曼散射机理指认样品各拉曼峰的物理根源。

石墨烯的理论基础:

       理论计算表明,石墨烯的布里渊区ZX包含六个光学模式,分别在4200cm-1、1580 cm-1、1350 cm-1、1620 cm-1和高阶拉曼区2700 cm-1 (2D峰)、3250 cm-1(2D'峰)、4320 cm-1 (2D+G峰)以及1930 cm-1 (D+ D' )。
      G峰产生于sp
2碳原子的面内振动,是与布里渊区ZX双重简并的iTO和iLO光学声子相互作用产生的,具有E2g对称性,是单层石墨烯中的一个一阶拉曼散射过程。G'峰和D峰均为二阶双共振拉曼散射过程,G'峰是与K点附近的iT光学声子发生两次谷间非弹性散射产生的。而D峰则涉及到一个iTO声子与一个缺陷的谷间散射。G'峰拉曼位移约为D峰的两倍,因此通常表示为2D峰,但是G'峰的产生与缺陷无关,并非D峰的倍频信号。D峰和G'峰均具有一定的能量色散性,其拉曼峰位均随着入射激光能量的增加向高波数线性位移,在一定的激光能量范围内,其色散斜率大约为50和100 cm-1/eV,这也是双共振过程的特征。G'峰和D峰均为谷间散射过程,而D'峰则为谷内双共振过程,两次散射过程分别为与缺陷的谷内散射和与K点附近的iLO声子的非弹性谷内散射过程。由于在K点附近石墨烯的价带和导带相对于费米能级成镜像对称,电子不仅可以与声子发生散射作用,而且可以与空穴发生散射作用,因此还会有三阶共振拉曼散射过程的产生。





      石墨碳材料在拉曼光谱中的主要特征是G峰、D峰以及它的倍频峰2D峰。一阶G峰和D峰,分别在1580和1350cm-1处。D峰是由sp2原子的声张膜引起的缺陷峰,代表材料中缺陷等杂质的密度,峰强越高则其中sp3键等缺陷越多。D、G峰的面积之比D/G随着芳香环数的增多而增多,D/G越大,杂质峰浓度越高,越低越好。2D带大约在2700cm-1,与石墨烯的能带结构有关,这个峰的形状、位置、2D波段的相对强度决定膜的层数,可以通过将其分峰来判断石墨烯的层数。

       另外,石墨烯在1650~2300cm-1有一系列的和频与倍频信号,这些拉曼特征峰的峰位、峰型和强度对其层数和层间堆垛方式均具有很强的依赖性,通过分析这些弱信号的拉曼光谱,可以获得石墨烯的层间堆垛方式、所处的环境温度、应力作用以及基底效应等信息。

       不同的碳材料,其拉曼峰有着明显的差异,可以精确的反应晶体结构的变化,因此通过拉曼光谱对石墨烯研究对器件的制备有重要的意义。

多层石墨烯的拉曼光谱表征实验设备:

样品:多层石墨烯薄膜,按照边缘、中间区域检测多个采样点。
试验设备:显微共聚焦拉曼光谱仪系统(型号
Finder Vista,北京卓立汉光仪器有限公司);激光器波长为532nm;光谱仪参数:500焦距,光栅1800g/mm;狭缝宽度为100um,积分时间为20s,100X物镜。



Finder Vista显微共聚焦拉曼光谱仪系统


4 拉曼光谱分析:

       对于多层石墨烯,有两个典型的拉曼特征峰,分别为1582 cm-1的G峰、2700cm-1的G'峰;对于含有缺陷的石墨烯样品或在石墨烯边缘,会出现1350 cm-1左右的缺陷D峰,以及1620 cm-1的D'峰。图2为多层石墨烯边缘区域、ZX区域不同测试点的拉曼光谱图。从图中可以看出,不同测试点的拉曼特征峰主要是位于1350cm-1、2700cm-1的拉曼特征峰形状和峰位稍许不同,其余基本一致。


图2  多层石墨烯ZX、边缘区域拉曼光谱图

       拉曼光谱在表征石墨烯材料的缺陷方面具有独特的优势,带有缺陷的石墨烯在1350cm-1附近会有拉曼D峰,一般用D峰与G峰的强度比(ID/IG)以及G峰的半峰宽(FWHM)来表征石墨烯中的缺陷密度。D峰强度越高则其中sp3键等缺陷越多。D、G峰的面积之比D/G随着芳香环数的增多而增多,D/G越大,杂质浓度越高。实验测得的1350cm-1、1580cm-1的拉曼光谱图如图3所示。



图3 1350cm-1、1580cm-1多层石墨烯的拉曼特征峰

       从图3a可以分析,多层石墨烯的G峰基本没有改变,相对强度有些许差别,但是,在第二个测试区域出现了边缘缺陷效应,可以确定通过CVD方法制备的石墨烯薄膜在边缘存在少量缺陷。

因此,缺陷密度表示为:

       众所周知,石墨烯是一种零带隙的二维原子晶体材料,为了适应其快速应用,人们发展了一系列方法来打开石墨烯的带隙,例如:打孔,用硼或氮掺杂和化学修饰等,这样就会给石墨烯引入缺陷,从而对其电学性能和器件性能有很大的影响。拉曼光谱可以快速定性、定量的确定石墨烯的缺陷情况,是一种判断石墨烯缺陷类型和缺陷密度的非常有效的手段。

      G'带大约在2700cm
-1,与石墨烯的能带结构有关,这个峰的形状、位置、G'波段的相对强度决定膜的层数,可以通过将其分峰来判断石墨烯的层数。从图4中可以看出,本次制备的石墨烯的层数是不均匀的,呈现出杂乱无章的状态,中间区域相对于边缘区域层数较少。

       石墨烯的G峰强度在10层以内线性增加,之后随着层数的增加反而开始变弱,块体石墨的拉曼信号强度比双层弱,在少层范围内,可以通过拉曼光谱比较快速准确地判断石墨烯的层数。另外,G峰频率随层数增加向低波数位移(如图3b),与层数的倒数成线性关系:

其中,

图4 2700cm-1多层石墨烯的拉曼特征峰

       单层石墨烯的G'峰强度大于G峰,并具有wan美的单洛伦兹峰型,随着层数的增加,G'峰半峰宽增大且向高波数位移(蓝移)。G'峰产生于一个双声子双共振过程,与石墨烯的能带结构紧密相关。对于AB堆垛的双层石墨烯,G'峰可以拟合为四个洛伦兹峰,同样地,三层石墨烯的G'峰可以用六个洛伦兹峰来拟合(如图3b)。不同层数石墨烯的拉曼光谱除了G'峰的差异,G峰的强度也随着层数的增加而近似线性增加。在多层石墨烯中会有更多的碳原子被检测到,因此G峰强度可作为石墨烯层数的判断依据。

5 结论

       本文利用532nm激发光源检测层石墨烯的拉曼光谱。通过对其拉曼光谱进行分析,可以快速准确地确定石墨烯的层数;利用其D峰与G峰的强度比可以定量研究石墨烯中的缺陷密度。拉曼光谱在石墨烯领域不仅仅止步于判断石墨烯的层数以及缺陷密度,根据石墨烯的晶格结构和双共振拉曼散射过程的跃迁选律,利用石墨烯边缘D峰强度不仅可以判断边缘手性结构,也可以分析石墨烯的扭转结构;另外,外界环境的变化也会对石墨烯的拉曼光谱产生影响,例如温度、应力以及石墨烯所处的基底等等。
石墨烯的拉曼光谱研究工作还有很长的路要走,在这条道路上还会遇到许多科学与技术上的问题,相信随着广大科研工作者的进一步深入地研究与分析,这些难题将会逐个被解决,人们对拉曼在石墨烯领域的应用认识将会更加的全面与深入。

6 参考文献

[1] 任桂知. 拉曼光谱研究碳纤维的微观结构及CNT/环氧树脂体系中缺陷周围的应力分布[D]. 上海, 东华大学.
[2] Yunfei Xie, Yan Li, and Li Niu,atc. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite[J]. Talanta, 2012, 100:32-37.
[3] K. Gopalakrishnan, Kota Moses, and Prashant Dubey, atc. A Raman study of the interaction of electron-donor and -acceptor molecules with chemically doped grapheme[J]. Journal of Molecular Structure, 2012, 1023:2-6.
[4] 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72:301-308.
[5] 党梅洁. 化学气相沉积法制备石墨烯及其光谱特性研究[D]. 北京, 
首都师范大学, 2013.
[6] 徐华. 石墨烯界面电荷转移的拉曼光谱研究[D]. 甘肃, 兰州大学, 2007.
[7] 赵伟杰, 刘剑, 谭平恒. 三层石墨烯及其n型和p型插层化合物的制备和拉曼光谱表征[J]. 光散射学报, 2011, 23(4):329-335.
[8] Crowther A. C.; Ghassaei A.; Jung N.; Brus L.E. Strong Charge-Transfer Doping of 1 to 10 Layer Graphene by NO2 ACS Nano. 2012, 6, 1865.



(来源:北京卓立汉光仪器有限公司)

2019-08-13 17:50:04 955 0
高性能的半导体材料单壁碳纳米管

单壁碳纳米管(SWCNTs)具备优异的电荷传输性能、良好的溶液加工性和高柔性、优异的力学性能、较高的导热性能、优异的机械稳定性和化学稳定性,在电子器件和光电子器件应用广泛,如透明导电膜电极、薄膜晶体管、逻辑电路、柔性可穿戴电子器件、化学与生物传感器、超级电容器与太阳能电池等。以SWCNTs作为有源层材料所制备的薄膜晶体管电学性能优异、特征尺寸更小、稳定性好、散热更快、运行频率更高,表现出优异的器件性能及极大的应用发展潜力。

  由于聚合物存在分子量多分散性和分子结构不明确的特点,且聚合物的分子量对单壁碳纳米管的分散和分离有较大影响,使选择分离的单壁碳纳米管在器件应用中易于出现批次性差异,在一定程度上限制了其实际应用。有机小分子不存在批次间重复性差的问题,但有机小分子材料分子量较小,有机小分子与单壁碳纳米管之间的π-π相互作用较弱,导致有机小分子分散的单壁碳纳米管墨水的储存稳定性较差。为了实现单壁碳纳米管的稳定分散,往往需要使用大量的分散剂,而大量分散剂的引入对于后续器件性能有一定影响。

2020-11-27 15:49:28 348 0
单碳纳米管的光学性质是什么?
 
2007-04-15 01:32:35 372 1
碳纳米管在拉曼光谱中哪个位置出现峰值
 
2017-09-10 02:31:39 455 1
电化学石英晶体位天平对超级电容器的表征

引言

近年来,大量研究涌入超级电容器领域。超级电容器有高充放电倍率、长循环寿命、宽工作温度范围和低单循环成本的优点。

电化学石英晶体微天平(EQCM)是与电化学工作站一起使用的石英晶体微天平(QCM),石英晶片的一侧作为工作电极。想要了解更多关于石英晶体微天平的介绍性解释,请参看本应用报告。

本应用报告主要关注超级电容器用材料的表征。 

10 MHz镀金石英晶片涂上1 μL由20 mg碳粉、5% 聚偏二氟乙烯粘结剂和1 mL N-甲基吡咯烷酮溶剂制备的碳粉悬浮液。溶液一滴滴加在晶片上,在烘箱中干燥。三种不同孔径尺寸的碳粉用于本章实验中。

晶片加载进Teflon静态电解池,连接到Gamry eQCM10M。Gamry Reference 600通过连接eQCM 10M前面板上的工作电极,与QCM结合。实验数据通过Gamry Resonator采集,采用Echem Analyst分析。电解质溶液是1 M CsCl水溶液。对电极是铂丝,所有电极电压相对于Ag/AgCl(饱和KCl)参比电极。

结果

1号碳材料

高比表面材料上5次循环伏安如图1所示。伏安曲线形状为典型的超级电容器—由于电荷在电极表面进出产生巨大的充电电流。

图1.滴涂在Au镀膜的石英晶体上高比表面碳材料5次循环伏安结果。扫描速率10mV/s。

依照电荷补偿机制,阴阳离子将在扫描过程中在高比表面材料表面出入。例如,正向扫描将导致阳离子从电极表面脱附或者阴离子吸附进入电极表面。在本应用指南中,由于我们涉及到的是各种高比表面(多孔)材料,所以我们用术语脱出代替脱附,用注入替代吸附。

如图2所示为记录质量随电势相对于时间的变化。正向扫描导致质量下降,而负向扫描导致质量增加,质量在正顶点处变化很小。这些结果显示,初看,Cs+在电势正向扫描时从材料中脱出,而在电势负向扫描时注入。在正顶点处很小的质量变化说明此时很可能发生的是一个Cs+脱出于同时Cl-注入的混合过

图2.质量和电势相对于时间作图。实验条件如图1所列

如图3所示为单圈CV结果与质量数据的叠加。这些数据使电势高于400mV时的混合过程更明显。

图3.叠加有质量数据的循环伏安图。扫描条件如图1所列

如图4所示的质量—电荷数据,也就是质量变化相对于电荷作图将上述混合过程分析得更彻底。加入箭头显示扫描方向。虚线代表对选取数据部分的线性拟合。根据以下公式,再由这些拟合虚线的斜率,可以计算得到摩尔质量:

MM=Slope*F*n           (1)

F为法拉第常数,n为电荷补偿过程中的电子数(此处n=1)。在此情况下,初始斜率173g/mol为一个Cs+离子(132g/mol)外加约2.3个水分子(18g/mol*2.3=41g/mol)。该质量-电荷作图的斜率随通过电荷越多而减小(更正的电势),直到降至8g/mol时基本上达到平衡,表明Cs+脱出和Cl-注入的混合过程。有人认为该过程由Cs+的脱出转向混合行为是由于Cs+的耗尽效应所造成的1。一旦材料中的Cs+在电荷补偿过程中被耗尽,此过程将转向Cl-的注入。扫描反向以后,质量—电荷曲线初始是平的,但随后斜率迅速增大至130g/mol。

图4.图3数据中得到的质量相对电荷作图。箭头标注初始扫描方向。

虚线表示部分选取部分数据的线性拟合。

2号碳材料

如上实验部分所述,另一种牌号,孔径大小不一样的高比表面碳粉沉积于Au镀膜石英晶体表面上被使用。

与之前样品不同,如图5所示,这种材料在电势正向扫描时质量增加,而负向扫描时质量减小,并没有出现耗尽效应。

图5.叠加有质量数据的循环伏安图。扫描速率为5mV/s。

如图6所示为质量—电荷作图。事实上,在该过程中观察到只有Cl-参与了电荷补偿机制。根据公式1计算得到摩尔质量为70.3g/mol,为一个Cl-离子外加平均1.9个水分子。

图6.图5数据中得到质量变化相对于电荷作图。箭头标注初始扫描方向。

虚线表示部分选取部分数据的线性拟合。

从作图中弯曲弧度可以看出,这些与Cl-离子相结合的水分子实际个数会随扫描过程有微小变化的。在以后的应用指南中将会采用通量比的方法研究溶剂的检测以及离子传递动力学2

3号碳材料

如上实验部分所述,第三种牌号的高比表面碳粉涂覆于Au镀膜石英晶体表面上被使用。这种碳粉具有和之前两种都不同的孔径大小。如图7所示为该材料循环5次后的测试结果。

图7.3号碳粉上循环5次后的循环伏安结果。扫描速率为10mV/s。

如图8所示为质量变化和电势相对于时间的曲线。该体系和其他两种碳粉相比,显示出独特的响应。需要注意的是,随电势的增加质量减小,直到接近顶点处质量开始增加直到再次达到顶点。然后质量减少,直到反向扫描开始质量再次增加。

图8.采用3号碳粉时,质量变化和电势相对于时间作图。扫描速率为10mV/s

上述数据的单圈循环伏安结果如图9所示。引入箭头进行阐述。

图9.如图所示为数据的第2圈。

对这些数据进行作图,质量-电荷曲线如图10所示,显示出与1号碳粉类似的Cs+脱出耗尽效应。然而,与1号碳粉耗尽效应造成混合过程不同的是,3号碳粉中的电荷补偿机制看起来变成了仅有Cl-的注入。

图10.从图9数据中得到质量变化随电荷变化曲线。

为了便于理解,将曲线中的阳极过程和阴极过程分开作图,分别如图11和图12所示。

图11. 如图9中所示的阳极过程。Cs+脱出部分的斜率为173g/mol,而Cl-注入部分的斜率为88.7 g/mol。

图12. 如图9中所示的阴极过程。Cl-脱出部分的斜率为88.7g/mol,而Cs+注入部分的斜率为130g/mol。

需要注意点是与1号碳粉上的类似情况,当Cs+脱出时质量电荷曲线斜率为170.3g/mol,而Cs+嵌入时为130g/mol。同样是这些结果显示,在阳极扫描过程约2.3个水分子被用于Cs+的溶剂化,而在阴极扫描过程Cs+离子完全被去溶剂化。

在3号碳粉电荷补偿机制中,在注入过程有约1.9个水分子伴随Cl-沉积,而在脱出过程则也有1.9个水分子伴随逐出。

本应用报告旨在为超级电容器分析材料的发展提供指导。离子和溶剂的传输信息从质量-电荷关系图中获得,为超级电容器的设计提供有用的见解。在未来的应用指南中,将涉及同类型材料离子和溶剂的改良,以研究离子和溶剂传输的热力学和动力学。

Gamry公司由衷感谢德雷塞尔大学的Gogotsi团队提供上述数据。

QCM除了模拟LbL组装外,还有很多应用领域。

●化学和生物传感器

●电聚合反应

●嵌入Li+过程研究

●腐蚀研究

●电沉积

eQCM 10M自带Gamry Resonator软件、Gamry Echem Analyst软件、入门指南、硬件操作手册(CD)、软件操作手册(CD)、EQCM电解池、AC电源适配器、USB接头电缆、BNC电缆、电化学工作站接头电缆和5个金涂布石英晶片(10 MHz)。还有一些其他的选择,包括额外晶片支架、QCM和EQCM流动池,以及Pt、C和Fe涂布晶片。

This test must be accompanied by a Microsoft® Windows XP SP3 or newer computer system

参考文献

1. Levi, M. D., Salitra, G., Levy, N., Aurbach, D., Maier, J. Nat. Mater. 2009, 8, 872-875.
2. Hillman, A. R., Mohamoud, M., Bruckenstein, S. Electroanalysis 2005, 17, 1421-1432.


2020-09-01 14:19:23 453 0
拉曼光谱是侧重表征物质什么特征的
 
2017-01-03 02:42:16 348 1
拉曼光谱具体是用来做哪一方面表征的
 
2017-02-20 10:19:46 336 1
拉曼光谱和热重分析属于电化学吗
 
2017-05-10 22:11:20 358 1
射线探伤双壁单影透照方法
 
2018-11-27 19:12:48 480 0
碳纳米管能否均匀扩散于水,是否与碳纳米管的种类与壁径有某种关系
 
2011-06-20 09:42:27 407 3
拉曼光谱怎么对沸石分子筛骨架结构的表征
 
2018-11-29 16:18:58 322 0
拉曼光谱怎么样表征pla/pcl膜的切面形态
 
2015-09-28 08:12:15 288 1
为什么用拉曼光谱表征光学声子和声学声子
 
2011-06-01 07:49:04 303 2
单原子分子或离子能产生拉曼光谱吗?
拉曼光谱法能测定单原子的分子或离子吗?
2013-06-25 19:40:20 407 1
4月30日《生物塑料表征——亚微米同步红外+拉曼光谱的聚合物

[主讲人]

Dr. Isao Noda


Danimer Scientific首席科学官和高级创新副总裁


美国特拉华大学科学与工程学院教授

Dr. Curtis Marcott


Light Light Solutions, Danimer Scientific高级合伙人


美国特拉华大学材料科学与工程系教授


[报告时间]

Apr. 30th.  周四 上午10:00 - 11:00


[注册链接]

https://register.gotowebinar.com/register/290268177486935051

 

[报告简介]

    Isao Noda博士和他的同事利用O-PTIR和Raman (IR+Raman)技术,在之前未能达到的数百纳米的空间分辨率下,探索了生物塑料(PHA/PLA)薄片界面处的空间化学分布,揭示了PHA和PLA界面边界处的一些新发现。两者之前被认为是不可混溶的,但通过对二维相关光谱(2-D Correlation Spectroscopy,2DCOS)数据分析,研究者发现两种聚合物在界面处存在很高程度的混合且结晶度下降,从而解释了这两种生物塑料的高相容性。


    另外,Curtis Marcott博士也将介绍O-PTIR的突破性技术,并通过讨论一系列的聚合物应用实例来展示O-PTIR技术的潜在优势。


·   利用远场光热红外光谱(O-PTIR)技术,在红外波段以小于500 nm的分辨率测量聚合物的空间结构与分布

·   相同位置,相同时间,相同分辨率的红外+拉曼分析,Z终实现分子振动光谱的协同作用


[温馨提示]

该网络研讨会有回放,可供大家以后点播观看,欢迎大家在研讨会期间和会后进行提问。


2020-04-28 13:29:41 278 0
射线检测ZX透照和单壁外照的区别
 
2016-04-18 04:02:53 397 1
碳纳米管的理论密度?
单壁或多壁的碳纳米管的理论密度.看来是没有我想要的答案了!... 单壁或多壁的碳纳米管的理论密度. 看来是没有我想要的答案了! 展开
2016-05-14 01:33:22 799 1
碳纳米管的前景
谁告诉我一下下啊... 谁告诉我一下下啊 展开
2007-06-06 12:43:07 327 1

9月突出贡献榜

推荐主页

最新话题