仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征

马尔文帕纳科 2021-07-22 16:44:27 693  浏览
  • 燃料电池(Fuel Cell)市场前景

     

    为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。

     

    燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。

     

    燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。

     

    作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。

     

    一、质子交换膜燃料电池

     

    目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。

     

    采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的ZJ替代电源[3]。

    如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。

     

    二、质子交换膜燃料电池的催化剂浆料分析

     

    催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。

     

    催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,ZZ影响膜电极的电化学性能[4]。

     

    如图 2 所示,常见的活性催化剂为铂基纳米颗粒,ZJ粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。

    催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。

     

    对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。

     

    在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。

     

    过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。

     

    理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。

     

    粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。

     

    X 射线衍射 (XRD)激光衍射 (LD) 动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。

     

    三、马尔文帕纳科解决方案 —— X 射线衍射技术

    X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。

    图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。

     

    如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值 3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。


    XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。

     

    如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。


    四、马尔文帕纳科解决方案—— 激光衍射技术

    激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。

    图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占ZD体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)<1%,具有高度的重复性。

     

    激光衍射法通常测量的是催化剂浆料中碳载催化剂团聚物的粒度分布。分散良好的催化剂浆料中,碳载催化剂团聚物典型的粒度范围在 100 nm 至 1 µm 之间。但是图 5 中可以观察到100nm 以下的颗粒,表明在分散过程中能量输入过高导致铂催化剂颗粒从载体上脱落,使浆料过度分散。众所周知,催化剂颗粒的粒度对电池性能影响很大。如果催化浆料分散不好,会导致催化剂利用率和传质效率下降,降低电池性能。适当的分散能够改善催化浆料的分散状态(进而改善电池的整体性能),但过度分散也会导致催化剂颗粒从碳载体上脱落,ZZ影响电池性能。

     

    激光衍射法也可以研究颗粒的易碎性,优化分散过程。将铂担载量40%的Vulcan XC72R 碳载催化剂粉末加入到异丙醇中,在剪切条件下进行分散,使用Mastersizer 3000监测浆料粒度随剪切时间的的变化。如图 6 所示,随着剪切时间的延长,10-100 µm 团聚体颗粒的数量减少,而 10µm 以下的颗粒数量增加。2 小时后,仍有大量团聚物 (>10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。

     

    五、马尔文帕纳科解决方案 —— 动态光散射技术

     

    与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。

     

    将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。


    图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(>0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。


    动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 

     

    动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。

     

     

    六、结论

     

    通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。

     

    联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。

     

    参考文献

    [1] 陈光. 新材料概论:科学出版社,2003

    [2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727

    [3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.

    [4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report

    [5] Orfanidi et al, J. Electrochem. Soc.165 (2018) F1254

    [6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037

    [7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31

    [8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72

    [9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609

     

    关于马尔文帕纳科

    马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提GX率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如ZDCD地提高生产率、开发更高质量的产品,并缩短产品上市时间。

     

     


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征

燃料电池(Fuel Cell)市场前景

 

为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。

 

燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。

 

燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。

 

作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。

 

一、质子交换膜燃料电池

 

目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。

 

采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的ZJ替代电源[3]。

如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。

 

二、质子交换膜燃料电池的催化剂浆料分析

 

催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。

 

催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,ZZ影响膜电极的电化学性能[4]。

 

如图 2 所示,常见的活性催化剂为铂基纳米颗粒,ZJ粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。

催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。

 

对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。

 

在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。

 

过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。

 

理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。

 

粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。

 

X 射线衍射 (XRD)激光衍射 (LD) 动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。

 

三、马尔文帕纳科解决方案 —— X 射线衍射技术

X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。

图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。

 

如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值 3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。


XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。

 

如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。


四、马尔文帕纳科解决方案—— 激光衍射技术

激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。

图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占ZD体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)<1%,具有高度的重复性。

 

激光衍射法通常测量的是催化剂浆料中碳载催化剂团聚物的粒度分布。分散良好的催化剂浆料中,碳载催化剂团聚物典型的粒度范围在 100 nm 至 1 µm 之间。但是图 5 中可以观察到100nm 以下的颗粒,表明在分散过程中能量输入过高导致铂催化剂颗粒从载体上脱落,使浆料过度分散。众所周知,催化剂颗粒的粒度对电池性能影响很大。如果催化浆料分散不好,会导致催化剂利用率和传质效率下降,降低电池性能。适当的分散能够改善催化浆料的分散状态(进而改善电池的整体性能),但过度分散也会导致催化剂颗粒从碳载体上脱落,ZZ影响电池性能。

 

激光衍射法也可以研究颗粒的易碎性,优化分散过程。将铂担载量40%的Vulcan XC72R 碳载催化剂粉末加入到异丙醇中,在剪切条件下进行分散,使用Mastersizer 3000监测浆料粒度随剪切时间的的变化。如图 6 所示,随着剪切时间的延长,10-100 µm 团聚体颗粒的数量减少,而 10µm 以下的颗粒数量增加。2 小时后,仍有大量团聚物 (>10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。

 

五、马尔文帕纳科解决方案 —— 动态光散射技术

 

与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。

 

将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。


图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(>0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。


动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 

 

动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。

 

 

六、结论

 

通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。

 

联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。

 

参考文献

[1] 陈光. 新材料概论:科学出版社,2003

[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727

[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.

[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report

[5] Orfanidi et al, J. Electrochem. Soc.165 (2018) F1254

[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037

[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31

[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72

[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609

 

关于马尔文帕纳科

马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提GX率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如ZDCD地提高生产率、开发更高质量的产品,并缩短产品上市时间。

 

 


2021-07-22 16:44:27 693 0
镍能做质子交换膜燃料电池燃料电池催化剂吗
 
2017-04-12 02:52:25 301 1
燃料电池中的催化剂是质子交换膜吗?
催化剂和质子交换膜是一个东西还是两个不同的东西? 他们的寿命分别又是多少?
2017-03-17 20:50:37 412 1
应用分享 | XPS成像功能分析评估质子交换膜燃料电池

疫情在家不添乱,产品学习不能断,

有奖问答Z终战,继续等您来挑战!

请一定看到Z后哦!


摘  要:本文主要通过XPS设备成像功能对质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell简称PEMFC)进行表征分析。针对PEMFC中膜电极组件(MEA)这类特殊样品的表征难题,采用超低角超薄切片机制备超薄切片样品,通过XPS设备中的成像功能,很好地解决MEA性能评估的难题,为进一步研究和提升MEA性能提供指导和依据。希望XPS设备的成像功能为科研人员提供新的表征思路,充分利用XPS设备成像功能。


关键词: XPS  PEMFC  MEA  超薄切片 XPS成像 


1

1 前言

21世纪以来,人类社会取得快速发展,对能源的需求日益增强。然而,随着煤、石油、天然气等化石能源的不断消耗,能源匮乏和环境污染问题随之出现,研究开发清洁、GX的新能源就显得尤为重要。燃料电池自问世以来,因其清洁、能源转化效率高等特点,得到快速发展,在多个领域有广泛的应用,成为人们研究的热点材料。燃料电池是一种采用电化学反应的发电装置,按电解质类型可分为:碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PEMFC)五大类。其中, PEMFC具有能量转换率高、清洁无污染、工作温度低、启动时间快、可靠性高、工作噪音小等优势,是一类具有很高应用前景的燃料电池。PEMFC结构如下图1所示

图1 PEMFC装置结构示意图


由上图1可知,PEMFC在原理上相当于水电解的“逆”装置,其单电池主要由阳极、阴极、质子交换膜和双极板组成。阳极为氢燃料发生氧化的场所,阴极为氧化剂(O2或空气)发生还原的场所,两极都含有加速电极电化学反应的催化剂;质子交换膜为电解质,只允许H+通过,为传递H+的介质;双极板为气体流通的通道。PEMFC电极一般分扩散层和催化层,通常用石墨化的炭纸或炭布作为扩散层材料,Pt/C作为催化层材料;全氟磺酸树脂(Nafion)作为质子交换膜材料;石墨或金属作为双极板材料。

对于PEMFC,由于质子交换膜为高分子聚合物且比较薄(通常在50~150 um),仅靠电池组的组装力,难以使质子交换膜立体化,从而导致电极与质子交换膜之间接触不好,阻碍H+进入多孔的电极内部,进而影响电池的质量。为实现电极的立体化,改善电极和质子交换膜的接触,通常会将加入Nafion的阳极、Nafion质子交换膜和加入Nafion的阴极压合在一起,形成“三合一”的膜组件(MEA),MEA是PEMFC的核心部件,如下图2所示。


图2 MEA结构示意图


PEMFC表征中遇到的问题及XPS解决方案


燃料电池工作中的电化学反应及变化往往发生在材料表面,这就需要表征分析表面变化情况。在表征表面变化时,电池材料研究中常用的表征手段通常难以取得好的表征效果;而XPS作为一种成熟的表面分析技术,由于其测试的表面敏感性,被越来越多地用于燃料电池的表征分析。同样,对于PEMFC材料,科研人员也会经常用XPS来进行表征分析。在表征PEMFC中的一些特殊组件,会遇到一些问题。比如本文要讲解的MEA材料,若此材料不同层存在元素扩散,特别是贵金属催化剂的扩散,将会严重影响MEA的质量。如何用XPS来表征MEA中元素的扩散情况,评估MEA性能和质量?


对于这个问题,您可能首先想到离子束深度剖析,通过深度剖析测试能很直观得到不同层元素的扩散情况。但是,MEA的质子交换膜的厚度通常在50~150 um,相对较厚,而离子束深度剖析通常适用于接近微米厚的样品,太厚的样品用此方式测试反而会起到事倍功半的效果。既然,离子束深度剖析的方式不适合。那么,XPS能否完成对此类型特殊样品的表征分析呢?答案是肯定的。


针对MEA材料表征的难题,本文采用一种特殊的制样方式,即将MEA制备成超薄切片使MEA中电极层和质子交换膜层都裸露出来,通过XPS设备的成像功能完成测试,能很好地解决问题,快速实现对MEA的评估。


样品情况及测试设备


选择PEMFC作为测试样品,需要将样品制备成超薄切片。那么,采用什么样的方式来制备合适的超薄切片呢?


由于MEA厚度通常在50~150 um,若采用传统横切技术,得到切片截面尺寸偏小,就会导致XPS测试中数据点不够;所以,为使超薄切片有更大的截面尺寸,在制备时建议采用超低角超薄切片机(ULAM)在超低角度(1~2°)下制备超薄切片。MEA制备的超薄切片样品如下图3所示。


图3 超低角超薄切片机制备MEA切片


本文主要通过XPS设备的成像功能来完成MEA超薄切片的表征分析,可选赛默飞XPS系列产品来进行测试表征,如下图4所示。


图4 赛默飞表面分析系列产品


MEA材料成像测试结果分析


4.1 MEA中代表性元素成像结果分析

为了对MEA材料中Epoxy、Pt/C电极和质子交换膜不同层有全面的了解评估,选择同时包含Epoxy、Pt/C电极和质子交换膜层的区域进行大面积(1mm)成像测试。选择MEA不同层代表性元素进行测试。测试完成后,各代表性元素成像图就不一一展示了,通过赛默飞XPS数据处理软件Avantage将各代表性元素成像图进行叠加处理,叠加后可得一张由不同色块组成的样品形貌图,如下图5所示。

图5 MEA不同层各元素大面积成像叠加图


由上图5,可直观地看到MEA的不同层结构,不同的色块清楚地反映出测试区域MEA的形貌信息。通过成像叠加图,可初步判断两个Pt/C电极与Nafion质子交换膜有明显的界面,它们之间没有明显的扩散情况。


4.2成像谱图回溯成谱结果分析

为进一步研究MEA中不同层中元素定性、相对定量及化学态信息,以全面评估MEA材料性能和质量。可通过赛默飞XPS数据分析软件Avantage中的回溯成谱功能来实现,即将元素成像谱图转化成元素高分辨窄扫谱图。在MEA三个不同层进行回溯成谱,如下图6所示。


图6 不同层中MEA回溯成谱位置

不同层中各元素回溯成谱相对定量结果比较,如下图7所示(注:由于MEA不同层中Pt、S元素相对含量较少,为了更好比较Pt、S元素,作图时对它们做了50倍扩大处理)。


图7 MEA不同层回溯成谱元素相对含量比较


由上图7,可得如下信息:

·由于MEA中,质子交换膜材料为Nafion,Pt/C电极中也混入了少量Nafion,扩散层材料为Epoxy,从而使质子交换膜层含较多F和少量S元素,Pt/C电极层含少量F和微量S元素,扩散层基本不含F元素和极微量S元素。

·Pt/C电极中含少量Pt元素,在Nafion和Epoxy区域中基本不含Pt元素,可判断Pt/C电极中Pt元素没向其它层大量扩散。

·MEA中不同层都含较多C、O元素。这是因为Nafion、Epoxy为高分子聚合物,主要成分为C、O元素;Pt/C电极中主要成分为C元素。

挑选MEA不同层代表性元素回溯成谱,进行元素化学态分析,如下图8所示。


图8 MEA不同层回溯成谱,C、Pt元素高分辨窄扫谱图


由上图8,通过比较不同层元素回溯成谱的高分辨窄扫谱图,可清楚直观地看到不同层元素化学态有较大差异:

·MEA不同层的C元素表现出不同价态。因为扩散层材料为Epoxy,可看到C元素主要以有机C-C的价态形式存在;而质子交换膜层材料为Nafion,可看到C谱图中出现了明显的有机C-F2新价态。

·MEA不同层的Pt元素表现出较大的差异。在Nafion层,基本没有Pt元素信号;而在Pt/C层,可看到明显Pt元素的信号,可进一步判断Pt没向Nafion层中大量扩散。


4.3成像谱图线扫描结果分析

通过成像谱图得到样品的形貌信息,已初步判断样品中各元素在不同层扩散情况。为进一步得到元素在不同层更直观的扩散情况,对元素扩散情况进行更好的评估,可通过赛默飞XPS数据分析软件Avantage中的线扫描功能来实现,即在成像谱图不同层中拉一条直线,将元素成像谱图转换成元素强度随距离变化二维谱图。在MEA两电极和质子交换膜层中进行线扫描,如下图9所示。


图9 MEA不同层各元素大面积成像叠加图和Pt元素线扫描谱图


由上图9,线扫描谱图为Pt元素强度随距离变化的谱图,可清楚直观地展现出Pt元素在MEA不同层的分布情况。Pt元素基本都分布在Pt/C电极层中;而在Nafion质子交换膜层中基本没有Pt元素信号,可进一步判断Pt元素没有明显扩散。同时,也可根据Pt元素变化情况,来估算线扫描方向Pt/C电极和Nafion质子交换膜的厚度信息。


为进一步研究Pt/C电极中Pt在小区域中扩散情况,特别是在Pt/C电极和Nafion质子交换膜界面处的扩散情况,这就需要高空间分辨率成像图,可对样品进行进一步小面积(250 um)成像测试,聚焦到MEA界面区域。此区域各元素成像叠加图和Pt、F元素线扫描图,如下图10所示。


图10 MEA界面区域各元素小面积成像叠加图和Pt、F元素线扫描谱图


由上图10,可直观地看到Pt/C电极层与Nafion质子交换膜层有明显的界面。Pt元素在界面处没有明显的扩散情况,这表明Pt/C电极中Pt元素没有向Nafion质子交换膜中扩散;而在界面处有少量F元素,这是因为电极层中也混有少量Nafion成分。


综上所述,通过XPS设备的成像功能,对MEA进行了全面表征分析,得到了丰富的样品信息:①通过对MEA不同区域代表性元素进行成像测试,直观地得到样品的形貌信息,快速判断元素在不同层的分布情况,可初步评估样品元素扩散情况。②通过对MEA成像谱图不同层回溯成谱,快速得到不同区域元素定性、相对定量及其化学价态信息。③通过对MEA成像谱图线扫描分析,直观地得到元素在不同区域的扩散情况,特别是在界面处的扩散情况。


这些信息,对于新制备的MEA,可辅助科研人员快速评估MEA性能和质量;对于使用过一段时间的MEA,可进一步研究MEA材料的失效机理。


结论


本文详细得展示了,通过XPS设备的成像功能,对PEMFC材料中的特殊样品进行成像表征分析,得到PEMFC材料中各元素定性、相对定量及化学态信息,同时也得到了电池材料中元素在不同区域的分布及扩散信息,很好地解决此类特殊电池材料分析表征的难题。这些表征信息,可让研究人员快速评估材料质量和性能,进一步研究电池材料的失效机理,从而助力科研工作者改进提升样品性能。


对于XPS,大家更熟悉的是其常规测试功能,比如常规XPS测试、离子束深度剖析等功能,而对XPS的成像功能可能了解不是很多。通过本文地讲解,可看出XPS成像功能在材料表征分析中也能发挥较大作用,希望XPS设备的成像功能为科研人员提供新的表征思路,广泛应用于各领域中;充分利用XPS设备的成像功能,助力科研人员的科研工作。


文末彩蛋——有奖问答活动来袭!


填写表单,5道问答等您来挑战,前十名全部答对者,将可获得“单耳蓝牙耳机”一个。采用极简设计,简单便携,动感时尚,潮人必备。(表单地址:http://thermofisher.mikecrm.com/nJZxgDa)

活动截止2020年3月20日 15:00,我们将diyi时间在本文评论区公布正确答案、参与名单、以及获奖名单,期待您的参与!

友情提示

所有题目答案均在文中;

请务必正确填写个人信息,方便兑奖联系;

5道活动题目均为填空题,答题没有时间限制;

有奖问答第二轮活动还在持续进行中,礼品是马卡龙造型“二合一数据线”;

欢迎将活动链接分享给朋友一起参与学习赢礼品!


2020-03-14 13:31:41 626 0
电解池中的质子交换膜作用是什么?
 
2018-11-18 10:27:50 204 0
燃料电池催化剂,什么是燃料电池催化剂
 
2017-07-07 18:54:56 538 1
燃料电池 催化剂
燃料电池对催化剂的要求都有哪些?
2008-07-21 10:25:19 660 2
颗粒计数器OPC-2300在水厂生产中的应用

 颗粒计数器OPC-2300初始引入目的是监测“两虫”,由于当时“两虫”的检测未列入水质标准,同时其致病风险主要在于生饮,故国内实际使用的水厂甚少,目前,仅广州、北京、深圳等地使用。 1、对微生物的监测作用 由于原水中的一些微生物如贾第鞭毛虫的包囊长8~12μm,宽7~10μm,隐 胞 子虫卵囊大小为4~6μm,用浊度仪难以准确反映实时的微生物量,而采用颗粒物计数仪OPC-2300则可一目了然地看到有关粒径范围的颗粒数,从而间接判断微生物的可能存在数量,为使用者提供是否存在生物污染的信息。由于正常的抽样检测“两虫”的方法耗时长(约3~4d才 能有结果),不利于实时工艺控制。对于直饮水而言,水质风险的实时控制非常重要,因此颗粒计数仪的作用突显,虽然颗粒计数仪OPC-2300的数据不能直接表示两虫的数量,但指示了潜在风险值。目前我国《生活饮用水卫生标准》对贾第鞭毛虫、隐胞子虫的饮用水质标准均为<1个/10L,若采用颗粒计数方法,国际上通用的安全标准是滤后水中大于2μm的颗粒 2、对滤池运行情况的控制作用 目前颗粒计数器OPC-2300在水厂的使用,除作为“两虫”的去除指示外,也可以作为滤池运行情况的监控设备。在滤池初滤阶段,由于池中残存反冲洗废水及 水流流态不稳定,对颗粒物的截留效果差;在过滤结束时,滤池出水水质处于临变阶段,这时,滤池截留效果变差,滤过水的颗粒物粒径和数量就会有所变 动,而此时滤过水浊度并没有提高,因此需采用颗粒计数器即时反映滤池出水的有关情况 3、对混凝沉淀工艺的控制 颗粒计数器OPC-2300也可应用于混凝沉淀工艺,通过对待滤水的颗粒物粒径和含量进行分析,从而调整混凝剂和助凝剂的投加量、排泥周期,优化有关工艺参数。

2023-03-31 09:41:10 90 0
总有机碳 TOC 分析仪在食品饮料生产中的应用

挑战 

       食品和饮料(F&B,Food and Beverage)生产商 在生产过程中面临着质量、效率、环保等多方面的 挑战,其中包括: 

1.生产商必须提高生产效率 

2. 生产商必须满足食品安全现代化法案(FSMA, Food Safety Modernization Act)的规定,以确保消费者的安全 

3. 生产商面临减少水和资源使用量的压力 

4. 生产效率和消费者安全方面的产品召回带来影响 

       2015 年底发布了 FSMA Z终规则和规定,要求食品饮料公司在生产过程中采取预防性控制措施,而 非反应性措施,来改善产品安全和质量控制。对生产设备进行清洁和灭菌,能够使食品饮料公司更加 主动地防范质量问题。例如,在不同产品共用的生 产设备上消除不同产品之间的交叉污染,对于产品安全和质量至关重要,特别是对含有过敏原的食品 的安全和质量至关重要。 

       在进行灭菌(或消毒)之前,必须先彻底清除生产设备上的污垢和产品残留物,才能确保有效灭菌。 对不干净的设备进行灭菌,不仅浪费时间和金钱, 还会损害该设备上生产的下一批产品的质量。

       美国加州的一家年产 350 多种产品的食品饮料公司, 打算采用新的工艺工具来改善产品质量和安全。该公司位于环保意识很强的加州,因此公司还打算提高生产效率、减少用水量。目前公司采用 ATP 拭 子测试来检测微生物污染,但不断遇到质量问题, 导致产品损失。公司意识到设备清洁验证的重要性, 想要找到一种快速、简便、可靠的方法来改善清洁 过程的质量控制。

解决方案 

       该公司用配置 Turbo 模式的 Sievers* M9 TOC 分 析 仪 成 功 地 进 行 了 总 有 机 碳 ( TOC , Total  Organic Carbon)分析,以监测原位清洁(CIP, Clean-in-place)周期后的淋洗样品,从而确认 生产设备的清洁度。公司进一步改进清洁过程, 在对设备灭菌之前进行 TOC 分析,以免浪费时 间对不清洁的设备进行灭菌。虽然其他技术(如 ATP 拭子测试)也能检测设备上的微生物污染, 却对于残留污垢来说缺乏测试的准确度和选择性, 而且容易产生“假正”的误报。在清洁验证过程中 增加 TOC 分析,能够使用户更全面地了解设备 的清洁度,排除残留污垢对设备的污染。 

       在过去 15 年甚至更长时间,制药和生物技术行业普遍采用淋洗和擦拭清洁样品的 TOC 分析法, 来确认是否从生产设备上彻底清除了活性药物化合物、辅料、清洗剂等。食品和饮料本身是有机化合物,或含有有机成分(如香料、色料等), 因此食品饮料行业将淋洗样品的 TOC 分析法作 为确定设备清洁度的GX工具。通过测量 TOC, 就能够检测到生产设备上的任何产品或清洁剂的残留物。

结果 

       表 1 显示了在 CIP Z后淋洗的Z后一分钟内测量到的加州生产厂的吸样样品的 TOC 值。所显示的数据来自用自来水清洗后的同一设备上生产的两种不同的产品。

表 1:淋洗样品的 TOC 测量结果表明,在产品 B 的 CIP 周期后,设备不干净。

       对该设备进行的 ATP 拭子测试结果表明,在产品 A 和产品 B 的 CIP 周期之后,设备上已没有微生 物污染。但 TOC 结果清楚显示,在产品的 CIP 周 期之后,该设备上仍有有机污染物或产品残留物。 操作人员目视检查后确认,生产设备仍然不干净, 需要进行进一步清洁才能确保产品质量和安全。 

       在采用 TOC 分析技术之前,该公司仅仅根据 ATP 拭子测试结果来决定是否进行灭菌。这就可能导致 在不干净的设备上生产下一批产品,造成产品损失。 TOC 结果能够清楚显示设备上是否有有机残留物, 因此食品饮料企业非常愿意用 TOC 分析法来确保 产品质量和安全。此外,监测生产设备上的 TOC 数据趋势,能够使企业主动及时地解决清洁和维护 问题,避免设备故障或产品不洁。

降低用水量和节省成本 

       人口增长、气候干旱、环境问题使得企业越来 越重视降低用水量。清洁工艺是食品饮料企业在减 少用水量时首要考虑的问题之一。企业进行 TOC 分析来验证生产设备的清洁度,就可以在不牺牲质 量的情况下缩短 CIP 周期。例如,TOC 测量时的 数据分析可以帮助企业优化 CIP 周期,确认缩短的清洁周期是否足以清除设备上的所有污垢。缩短 CIP 周期,即使每次缩短几秒钟,都可以积少成多, 大大减少用水量、节约成本。 

       在食品饮料生产设备的清洁过程中,另一个问题就是如何确认设备在空闲一段时间后的清洁度。该加 州生产厂估计,如果减少对空闲超过规定时间的设 备进行清洁的次数,每月节省的水费、劳动力成本、 化学品支出总计可高达 1 万美元。该家工厂很快就会采用淋洗样品的 TOC 分析法来确定空闲后的 设备是否仍然干净,以避免进行不必要的 CIP 周期。 

生产设备故障排除 

       该加州食品饮料生产厂使用配置吸样模式的 Sievers M9 TOC 分析仪来监测整个设备的多个取样点,他们发现有一段生产设备在 CIP 周期中未能被正确淋洗。生产厂从生产容器的上游和下游 的几个端口取样,用 TOC 测量结果来确定故障位置(见图1)。生产厂找到问题所在之后,就能够更改未来 CIP 周期中的水流,并进行工程方面的改变。

图1:生产容器上游和下游的吸样样品的 TOC 分析显示了故障的位置。

投资回报 

       该加州食品饮料生产厂在 36 小时的生产时段中生产多达 50 批产品。如果在生产时段中发生问题、造成产品损失,就会浪费掉至少 20 万美元。 在确定灭菌前的设备清洁度时, TOC 测量法比其他方法都更加准确,能够将产品损失的风险Z小化。因此工厂在生产过程中进行 TOC 分析的投资回报,远远大于购买分析仪的成本,一个生产时段后即可收回成本。 

       此外,一个生产时段之后,通常需要 3 到 7 天才能确认产品可以安全销售。在此期间生产不能停 止,通常还会完成 2 到 3 个生产时段的生产。如果diyi个生产时段中有未纠正的问题,在发现问 题之前就会累计造成 60 多万美元的产品损失。 TOC 分析是一种简便的方法,能够以近乎实时的速度检测出清洁周期中的任何问题,避免发生产品和资金的严重损失。 

       用 TOC 分析法来优化 CIP 周期、减少水量,还能 提高生产效率,每月节省数万美元的劳动力成本、 水费、化学品支出等。 

Sievers M9 TOC 分析仪 

       在此应用中,所选用的 TOC 分析仪应具有较宽的动态范围、能够分析自来水基体(因为许多食品饮 料厂用自来水清洁设备)、能够快速提供可用于决 策的可靠数据。该加州生产厂选用的 Sievers M9  TOC 分析仪,可以分析 0.03 ppb 至 50 ppm TOC 的样品,采用 EPA(美国环保局)和标准方法 (Standard Methods)所批准的方法来分析城市自来水。该款分析仪每年只需校准一次,无需载气。 此外,M9 还能运行在线样品和吸样样品,这就使 其能够用于很多取样位置,以及整个设施的淋洗水流。 

       操作人员用配置 Turbo 模式的 M9 对 CIP 淋洗进行 在线分析,能够实时监测设备的淋洗过程。此外, 还可以在整个淋洗周期的各个点、同一设备部分的各个取样位置、以及多个设备部分上进行吸样取样。 将在线分析和吸样(旁线 at-line)分析结合起来, 就能清楚地看到清洁过程的效率,看到 CIP 周期或设备本身问题的早期征兆。

结论 

       该加州食品饮料厂使用 Sievers M9 TOC 分析仪进行 TOC 分析,改善了清洁过程的效率和质量控制。 事实证明,TOC 分析法比其他方法更加准确,更 能帮助厂家确认设备的清洁度,从而帮助厂家做出正确决策、避免产品损失。在食品饮料生产中采用 TOC 分析法还有更多的优势,这些优势都可以通过优化 CIP 周期、排除生产过程故障来实现。


2019-11-07 15:16:06 431 0
用于交换膜燃料电池和氯碱工业的氯碱离子膜的区别
 
2018-11-24 04:58:43 368 0
全氟磺酸离子交换膜( PSAIM)与全氟磺酸质子交换膜(PEM)的区别?
应用于钒储能电池的全氟磺酸离子膜和应用于质子交换膜燃料电池的全氟磺酸质子膜有什么不同? 望高手解答一下,很困惑!
2013-08-06 01:34:48 544 5
钠离子交换膜和阳离子交换膜有什么区别
 
2018-11-26 14:51:49 310 0
该电池电极材料是什么 电极反应式是什么 提示 注意中间的质子交换膜
 
2012-04-16 09:06:34 257 2
大孔吸收树脂在现代中药生产中的应用
 
2016-03-17 05:40:32 286 1
高中化学的电化学阳离子交换膜和阴离子交换膜怎么判断
 
2017-07-27 01:50:15 2137 1
关于阳离子交换膜
高中课本上说:阳离子交换膜具有很好的选择性,它只允许阳极室的Na+、H+透过离子交换膜进入阴极室。 那么,为什么只是阳极室的阳离子移到阴极室?阴极室的阳离子就不会通过交换膜进入阳极室?可是这样的话,阴极室的稀氢氧化钠又怎么能变成浓氢氧化钠呢?求助... 高中课本上说:阳离子交换膜具有很好的选择性,它只允许阳极室的Na+、H+透过离子交换膜进入阴极室。 那么,为什么只是阳极室的阳离子移到阴极室?阴极室的阳离子就不会通过交换膜进入阳极室?可是这样的话,阴极室的稀氢氧化钠又怎么能变成浓氢氧化钠呢?求助!! 展开
2012-08-19 11:46:30 717 3
四环冻干机—冷冻干燥技术在药品生产中的应用分析(一)

      药品产业的产品质量直接关系到病人的生命健康,如何快速生产出质量合格,药效高的药品是对于制药企业的要求,现代制药过程中使用冷冻干燥技术实现对药品的干燥和提纯,以其精确度和高效性而被企业所青睐,下文进行具体的分析。

冷冻干燥技术基本原理研究

       冷冻干燥的主要目的是通过升华的方式直接取出药品中的水分,因为液态水会对药品的质量造成很大的影响,尤其是一些颗粒药物,有液态水的存在会对药效产生很大的干扰。利用冷冻干燥技术直接将成品中的水分去除十分便捷,更不会对药物本身的质量产生影响,是制药过程中使用较为广泛的技术。

      如果压力超过了610.5Pa的时候,从固态冰开始,水等压加热升温的结果都是历经液态之后才会进入气态。

       当压力小于610.5Pa的时候,固态冰加热升温的结果就是从固态直接变成气态。

       针对上述情况,我们可以先将物料进行冷冻处理,之后在真空环境中对其进行加热,使固态并直接以水蒸气的形式散发出来,以达到干燥的目的。

药品冷冻干燥技术及其技术优势分析

       所谓的冷冻干燥工艺的原理就是对已经过简单干燥工艺的药液进行低温处理,让药液内部的水分结冰,然后将冻结的药液放置于真空条件下热处理,因此使得药液中结冰的水直接升华为气体排出,至此药液变成最干燥状态。对于药品进行冻干,通过其操作过程不难发现对于药品的成分控制极具优势,通过控制压力和温度来制作不同成分的药品,由于数控的精确性保证了药品的质量,在制药中被广泛使用。

采用此方法具有以下几个方面的特征:

       可以克服采用最终灭菌方法生产的无菌液体注射剂的不稳定问题,冻干药品具有极好的药物稳定性;

药品的最终状态是固体粉末,这样使药品有效的避免被水溶解;

       降低有些药品在热处理过程的敏感度;

       冻干药品在医护人员使用时,由于环境温度增高,更加易溶解;

       冻干药品在优良的制造工艺特点下很难受到外界微粒的感染。

       在进行药品冻干这项工作前﹐应该将药液依照一定的分量均匀放置在适当容器中,而容器的首要选泽即玻璃瓶亦或是安瓿,确保表面不同时厚度薄,之后搁置于冻干箱开始作业。冻干工艺过程大致可以分为预冻结、一次干燥和二次干燥,大约需要15到24h才能冻干产品,同时干燥时间容易受到多方因素的影响,比如每个瓶子的装量以及瓶子的形状、规格等。预冻也就是冷冻制品冷冻的过程。预冻不但可以保证物质性质,还可使冻后产品仍有正常的结构。分析干燥情况可以看出,其直接和冻结相互关联,而冻结则是由于受到一定的脱水气速度灯箱,影响到冻干产品质量。

       在相关的冻干中,第一步进行液体冷冻,在此基础上,根据质量要求标准,将其溶液进行分离处理,主要包括溶质、冰晶两部分。

       第二步是将需要进行冷冻处理的物品装入特定的容器中,为了提升工作效率选用容积较大的容器,也就是制品的表面更大一些,厚度降低些。

       因为通过冷藏而形成的冰晶在形状、尺寸、分布等问题都会对干燥制品的活性、构造、颜色以及溶解性等层面产生影响,所以,采用何种程序、制品的结晶状态和速度的快慢会直接影响到其整体的质量。冻结共组结束之后,务必要达到标准要求后方能进入升华环节,通常情况下,一次干燥是以搁板、产品温度以及内部压力之间的固有联系为特征的。对药品的冷冻需要依靠隔板来传递温度,隔板上的温度就是药品的温度,在记性降温的过程中,对于温度的检测主要对象就是隔板,精确温度才能保证药品干燥的程度,关系到最终药品的质量。关键点还在于内部的压力,对于压力的控制也应该保证精确。

        四环福瑞科仪科技发展北京有限公司制造的LGJ-20G/30G/40G系列制药冻干机,作为直接与药品生产接触的设备,制药装备制造具有十分严格的生产工艺标准与规范,较其他设备的自动化升级更具难度,该系列冻干机整机通过CE认证。控制软件系统为 LINUX 系统,冻干过程均有可编程程序自动控制,可实时切换为人工操作,实现冻干过程全程参数控制, 在运行过程中系统自动监控检测并记录储存相关数据,可通过标配远程系统进行监控和检测维护,支持大数据和智慧实验室建设,选配数字密码签名,审计追踪。


2021-11-29 13:51:31 475 0
安东帕 L-Dens 3300 密度在铅酸蓄电池生产中的应用

铅酸蓄电池生产

通过在线浓度测量优化化学反应和实现快速转产


你知道吗?

       可靠的在线硫酸浓度测量可以确保化学反应过程的质量和蓄电池中的Z终 H2SO浓度。另外还可以缩短加注站转产期间的停机时间。

① 关于铅酸蓄电池之生产

       铅酸蓄电池是Z早、Z成熟的可充电电池。由于价格低、功率质量比相对较大,因此尽管能量重量比非常小,但它主要用作汽车起动、照明和点火 (SLI) 电池。

      铅酸蓄电池的主要成分是由铅制成的阳极、由二氧化铅制成的阴极和作为电解质的稀硫酸 (H2SO4)

铅酸蓄电池的成分

蓄电池生产中的硫酸

       在铅酸蓄电池的生产过程中,需要用到不同浓度的硫酸。硫酸浓度不仅取决于生产步骤,还取决于蓄电池的类型和尺寸。

化学反应

        需要硫酸的diyi个生产步骤是极板化成。化学反应过程中会在正极板上形成 α 和 β PbO2。α 和 β PbO2 之间的比率直接影响蓄电池的电流效率。在化学反应过程中,H2SO4 浓度是实现正确比率的一个重要参数。

       槽化完成后,会组装蓄电池,加注正确浓度的硫酸,并进行充电。电池内化学反应后,会更换电解质(二次进料法)或调节硫酸(一次进料法)。在加注和储能结束时,硫酸浓度和电解质水平必须符合规定的浓度。


②应用解决方案

硫酸浓度的测量

       在硫酸溶液中,密度测量非常适合测定高达 90% 的 H2SO浓度。在铅酸蓄电池生产中,0% 至 55% (1.4453 g/cm³ @ 20°C) 的浓度范围很重要,密度与硫酸浓度具有陡峭且几乎呈线性的相关性。

密度值与 H2SO4 溶液浓度之间的关系

稀释来料的硫酸

       高浓度硫酸 (98%) 主要通过卡车运输到生产现场。现场将浓缩的 H2SO4 稀释至所需的不同浓度。

       硫酸在稀释过程中会放出大量的热量,需要进行冷却。因此,硫酸的温度在稀释过程中变化很快。接液部件由玻璃制成,安东帕的高精度在线密度传感器 L-Dens 3300 GLS 版本可以轻松跟踪这些变化。所有塑料涂层传感器都是热惰性传感器,无法跟踪快速温度变化(例如大多数电导传感器)。


全新 L-Dens 3300 密度传感器

适用于低流速的密度传感器

在加注站稀释硫酸

       中小型工厂用罐中储存各种所需浓度的硫酸。大型工厂可以进行两阶段稀释过程。diyi步是稀释并储存中等浓度的H2SO4,第二步是在加注站进行Z终稀释。产品转换,即推出新类型或尺寸的蓄电池,可能引起加注站的浓度变化。

左:硫酸稀释系统

右:加注站

       如果仅由实验室浓度测量提供支持,则调整灌装罐的浓度可能需要长达40 分钟。安东帕的在线密度传感器L-Dens 3300 可以协助实现自动控制浓度变化,从而将停机时间缩短到手动控制变化所需时间的一小部分。

槽化成

       在化学反应过程中,电解质的浓度将会增加。硫酸浓度测量和调节是实现高质量恒定化学反应过程的关键所在。循环方法会在化学反应期间测量和调节硫酸浓度。

浓度测量与化学反应

③ 没量设置

       L-Dens 3300 GLS 版本是一款非常紧凑的在线密度传感器,其接液部件由玻璃制成。它包括集成控制器和配备用户界面和电容式按键的高品质显示屏。

安东帕独立式

硫酸在线密度传感器L-Dens 3300

④ 在线密度传感器L-Dens 3300 优点


- 优化化学反应过程

- 大幅缩短灌装线转产期间的停机时间

- 确保加注过程的质量

- 高度精确

- 自动温度补偿

- 易于操作

- 且免维护

适用于H2SO4 应用的

其他安东帕解决方案


- 硫酸生产

- 测量0% 至110% 之间的H2SO4

- 酸洗液监测



2020-02-10 16:04:07 486 0

9月突出贡献榜

推荐主页

最新话题