仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

亲水材料测量动态接触角有意义么

ascii19920318 2017-10-30 00:33:31 363  浏览
  •  

参与评论

全部评论(1条)

  • 你狂跳额 2017-10-31 00:00:00
    一般只有疏水接触角才会测量动态,观察水滴的润湿情况,亲水性较强的材料润湿很快,根本没法观察。

    赞(11)

    回复(0)

    评论

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

亲水材料测量动态接触角有意义么
 
2017-10-30 00:33:31 363 1
接触角测量仪如何可靠地测量超亲水材料的接触角?

      超亲水一般是指水滴能够在材料表面完全铺展开,使接触角等于或者接近于0°。超亲水材料对水的润湿性非常好,水滴在这种材料表面上极易铺展,接触角数值很小,称为极低接触角。

      在不少应用领域遇到的接触角的值会很低,或者要求其值越低越好。比如液晶屏和太阳能电池板的清洗工序就是这样一个比较典型的应用领域,通过对玻璃/金属等表面的清洗以去除上面的油脂等有机、低表面能的污染物,然后通过测量水滴在其上面的接触角来评估或确保清洗的效果。清洗后有机污染物去除的越彻底,材料表面越清洁则接触角数值越小。工艺上往往要求水滴的接触角小于10°甚至更低。

       多数情况下,当接触角低于约 15°时,测量难度将随着接触角角度的减小而急剧升高,准确性和可靠性下降;当接触角低于约 5°时,已几乎很难再得到有意义的结果。这是因为当接触角下降到这一范围时,液滴的侧面图像严重受到侧面光照和样品反光的影响,采用传统侧视成像的方法很难再获得准确的液滴边缘轮廓,这会直接影响接触角的拟合计算。为了解决极低接触角的测量问题,LAUDA Scientific接触角测量仪引入了一种可靠的极低接触角测量方法:俯视成像测量方法。俯视测量法是通过从液滴正上方观测在固体表面上的液滴形状来获得液滴接触角的测量方法。

       下图是使用传统侧视法和俯视法对同一液滴同时拍照得到的照片。显然接触角值在5°左右时侧视法照片的液滴轮廓已经模糊,软件已经无法自动准确的获得液滴的边缘轮廓,而俯视法液滴的三相接触线轮廓清晰可见。

俯视法接触角测量仪测量范围广,尤其是接触角值极小时依然能够得到准确可靠的测量结果。在此类应用中俯视法和传统侧视法相比,有着明显的优势,是测量超亲水材料接触角的优先选择。

根据接触角不同计算模型的特点,一般来说在材料表面均一性较好的情况下,侧视法接触角测量仪测量接触角值在0~180°范围内都可以使用,并且在130°以上时侧视法测量结果更为可靠;俯视法接触角测量仪测量接触角值在0~180°范围内都可以使用,并且在10°以下时俯视法测量结果更为可靠。


2022-11-16 15:21:10 152 0
LAUDA接触角测量仪应用:超亲水材料的接触角测量

       超亲水材料对水的润湿性非常好,水滴在这种材料表面上极易铺展,接触角数值很小,称为极低接触角。

       在很多应用领域会涉及到极低接触角的测量。比如液晶屏和太阳能电池板的清洗工序。清洗后有机污染物去除的越彻底,材料表面越清洁则接触角数值越小。工艺上往往要求水滴的接触角小于10°甚至更低。

       利用传统的侧视法接触角测量仪时,如果接触角低于 15°,测量难度将随着接触角角度的减小而急剧升高,准确性和可靠性下降。当接触角低于约 5°时,几乎很难再得到有意义的结果。这是因为当接触角下降到这一范围时,液滴的侧面图像严重受到侧面光照和样品反光的影响,采用传统侧视成像的方式很难再获得准确的液滴边缘轮廓,这会直接影响接触角的拟合计算。

        解决极低接触角的测量问题,采用俯视成像方式是一种非常可靠的测量方法。俯视测量法是通过从液滴正上方观测在固体表面上的液滴形状来获得液滴接触角的测量方法。

        下图是使用侧视法和俯视法对同一液滴同时拍照得到的照片。显然在接触角 5°左右时侧视法的照片液滴轮廓已经模糊,软件无法自动准确的计算出液滴的边界,而俯视法液滴的三相接触线轮廓清晰可见。

       俯视法接触角测量仪测量范围广,尤其是接触角值极小时依然能够得到准确可靠的测量结果。在此类应用中俯视法和传统侧视法相比,有着明显的优势,是测量超亲水材料接触角的Z佳选择。

       受益于二十世纪末计算机速度的大幅提高和高分辨率数码相机的出现,使得我们对图像数据求解上述方程成为了可能。

       简单地说,在已知液体表面张力和密度的前提下,如果我们能够控制液滴的体积并且精确的测量液滴和材料表面三相接触线的形状尺寸,我们就可以利用 Laplace-Young 模型计算出液滴的三维轮廓,从而准确的得到接触角数值。

       下图为使用侧视法和俯视法对同一液滴同时测量接触角得到的结果。

注意:根据接触角不同计算模型的特点,一般来说在材料表面均一性较好的情况下,侧视法测量接触角在 0~180°范围内都可以使用,并且在 130°以上时侧视法测量结果更为可靠;俯视法测量接触角在 0~180°范围内都可以使用,并且在 10°以下时俯视法测量结果更为可靠。


2020-05-19 14:08:28 381 0
光学接触角测量仪之俯视法测量超亲水材料接触角

        在很多应用领域会涉及到测量超亲水材料的接触角。比如液晶屏和太阳能电池板的清洗工序。清洗后有机污染物去除的越彻底,材料表面越清洁则接触角数值越小。工艺上往往要求水滴的接触角小于10°甚至更低。

        利用传统的侧视法接触角测量仪测量接触角,如果接触角低于15°,测量难度随着接触角角度的减小而急剧升高,准确性和可靠性下降;当接触角低于约5°时,几乎很难再得到有意义的结果。对于测量极低接触角,俯视测量法是一种非常可靠的测量方法。俯视测量法是通过从液滴正上方观测在固体表面上的液滴形状来获得液滴接触角的测量方法。

        侧视法和俯视法对同一液滴同时拍照得到的图片如下图所示,接触角5°左右时侧视法的液滴轮廓已经模糊,软件无法自动准确地计算出液滴的边界,而俯视法液滴的三相接触线轮廓清晰可见。


        俯视法接触角测量仪测量范围广,尤其是接触角值极小时依然能够得到准确可靠的测量结果。在此类应用中俯视法和传统侧视法相比,有着明显的优势,是测量超亲水材料接触角的JJ选择。


2021-04-28 10:07:15 345 0
超亲水材料与超疏水材料的微观动态变化和平衡接触角的演变

荷叶(Lotus effect)具有非常好的超疏水性,因而,在取得ZH的平衡接触角时,出现了明显的弹跳效果。且如果疏水角度越大,弹跳的高度越高。且从效果影像中可以看出,此时的滚动角度非常小,水滴很容易滚动。

而这些均是我们长期研究中,我们仅仅注意了荷叶的表面结构以及平衡态的接触角值(平衡态的接触角值仅仅表征了部分性质)。在测试过程中,我们也发现由于荷叶的超疏水性,水滴从针头转移到荷叶表面会相对比较困难。目前美国科诺提供了全世界Z细的27号聚四氟乙烯针头以及34号不锈钢针头,液滴转移时量为4-5uL左右。由于滚动角(roll-off angle)非常小,所以,水滴停留的地方通常是表面有瑕疵的位置或边缘,此时的平衡接触角值意义不大。

由下面的影像我们认为,从高速的角度考虑才是最合理的方案,表征超疏水效果会比一般平衡接触角值的表征会更有意义。且,在接触角以及界面能量的分析中,我们采用了在Young-lapalace方程拟合中增加能量(重力加速度等势能与动能的考虑),提出了世界ling先技术的ADSA-HS技术,从而为我们进一步探究仿生材料提供了更好的分析技术。


2、我们对比实验了一组普通材料的水滴滴向表面的效果,其在平衡接触角形成前的动态效果如下所示。

很明显的看出,此时的弹跳效果不明显,这是由于固体表面自由能大于液滴弹跳的作用能量。且我们非常容易得到结论,固体表面能越大,其向上延展的高度就越低。


(1)空调器用超亲水铝箔的动态接触角演变过程。ZH平衡接触角值为3度以内。

(2)实验室用载玻片接触角演变影像。

(3)不锈钢表面平衡态接触角前的动态演变影像。

(4)聚四氟乙烯表面平衡态接触角前的动态演变影像

2021-03-09 17:47:29 423 0
如何测量动态接触角

在接触角测量仪器采购中,常遇到有客户笼统提到要具备测量动态接触角的功能。其实在测量实践中,动态接触角的测量也有细分:

一、测量不容易挥发的液体在固体表面随时间变化的动态接触角,比如电力部门测量绝缘油在绝缘子等材质表面随时间变化的铺展润湿性。这种测量需要用到上海中晨生产的JC2000系列接触角测量仪上的自动连续拍摄功能,拍摄间隔1~3600秒,用户可自行设定。(悬滴法测量液体表面张力时也可以使用自动连续拍摄功能以提升测量可靠性)。这种测量上海中晨各系列接触角测量仪的标准型即可实现,无需增加付费选配件。

二、测量容易挥发的液体在固体表面随时间变化的动态接触角、或者液体在固体表面上方垂直滴落以及撞击固体表面变形和铺展过程。这种测量需要用到上海中晨生产的JC2000系列接触角测量仪上的高速摄影功能,拍摄速度默认为25帧/秒。这种测量上海中晨各系列接触角测量仪的标准型即可实现,无需增加付费选配件。

三、进液法/退液法测量液体在固体表面的前进角/后退角,这种测量上海中晨各系列接触角测量仪的标准型即可实现,无需增加付费选配件。

四、插板法测量固体垂直进入液面的浸润角,比如电镀行业,这种测量需要在标准型基础上添加上海中晨付费选配件-垂直夹具。

五、转落法测量滚动角/前进角/后退角,比如测量汽车玻璃经过表面处理后转动多少倾角上面的雨水会自行滑落,这种测量需要在标准型基础上添加上海中晨付费选配件-360度垂直旋转样品平台或者整体旋转机构。

2019-06-20 17:36:21 384 0
接触角测量仪测量动态接触角的方法

       目前使用光学接触角测量仪测量动态接触角的方法有倾斜台法、离心转台法和加液/减液法三种。

       DY种方法是倾斜台法又称斜板法。实验是将一个液滴置于待测的样品表面后,利用倾斜台缓慢地倾斜样品表面,同时跟踪并记录液滴形状、接触角和位置的变化。倾斜刚开始时液滴不一定发生移动,但是形状会发生变化,使得下方的接触角不断地增大,而上方的接触角则不断地变小,当表面倾斜到一定角度时,液滴开始发生滚动或滑动,此时液滴下方三相接触点发生运动之前对应的接触角就是ZD前进角,而液滴上方三相接触点发生运动之前对应的接触角就是最小后退角。当液滴整体刚刚开始发生滚动(滑动)时的表面倾斜角,就叫滚动角(滑动角)。

       使用倾斜台法测量动态接触角的特点是不仅能测量到前进角和后退角变化的全过程,而且能得到液滴在材料表面上的滚动角。

       第二种方法是离心转台法又称滞留力天平法,实验是将一个液滴置于待测的样品表面后,利用离心转台使液滴沿着圆周转动,同时跟踪并记录液滴形状、接触角和位置的变化。随着转速的不断增加,液滴整体受到的离心力越来越大,液滴开始发生形状变化,并且顺着旋转半径的方向在材料表面上滑动的趋势越来越明显,直到发生滑动。在形状变化过程中外侧的接触角不断地增大,而内侧的接触角则不断地变小,当转速达到一个临界值时,液滴开始发生整体滑动,此时液滴外侧三相接触点发生运动之前对应的接触角就是ZD前进角,而液滴内侧三相接触点发生运动前对应的接触角就是最小后退角。根据转速和半径计算得到的离心力就等于液滴在材料表面上的滞留力。

       

       使用离心转台法测量动态接触角的特点是不仅能测量到前进角和后退角变化的全过程,而且能得到液滴在材料表面上的滞留力。这个方法不仅适用于疏水材料也适用于亲水材料。

       第三种方法是加液-减液法又称注液-吸液法,实验是将一个液滴置于待测的样品表面后,把注射针插入液滴内部,缓慢的注射液体使液滴体积增大到一定数值,之后再缓慢的回吸液体使液滴体积减小到一定数值,同时跟踪并记录液滴形状、接触角和位置的变化。在液体注射过程中两侧的接触角不断地增大,直到三线接触点发生移动时的亚平衡状态。而在回吸液体的过程中两侧的接触角则不断地变小,直到三线接触点发生移动时的亚平衡状态。如果液体注射和回吸的速度足够缓慢,三相接触点运动处于一个亚平衡状态,此时得到的接触角分别为ZD前进角和最小后退角。

       使用加液-减液法测量动态接触角的特点是能测量到前进角和后退角变化的全过程,而且不需要额外的特殊附件,投资较低。缺点是液滴形状会受到注射针的影响而导致接触角计算的误差。  



2020-09-08 12:14:41 413 0
动态接触角测试仪
产品详情

       接触角测定仪用于测量液体对固体的浸润性,通过测量液体对固体的接触角、计算、测定液体的自由能即液体对固体的附着力,张力等指标,该仪器可广泛应用石油、化工、医药、造纸、尽料等领域,作科学研究及教学用,我厂生产的接触角测定仪系列产品,根据用户的不同需求提供了不同型号仪器。

具体应用领域举例︰

1、金属焊接过程中,检测焊剂对金属的附着力︰

2、印刷行业油墨,金属,纸张之间的附着力︰

3、粘接剂与固体间的粘接程度研究︰

4、航天工业空中雨雾对飞机基体的润湿程度检测︰

5、军事科学中弹片在空气中与雨雾接触角的测定︰

6、石油开采过程中,注人添加剂与原油中固体前进角,后退角的测定︰

7、纳米材料与不同活性集问润湿性的测定、研究︰

8、铝箔亲水角的测定︰

总之,该体器应用范围之广泛不能在此一一举例。


仪器参数

接触角测量范围:0-180°
接触角测量精度:±0.1°
表界面张力测量范围:0-1000mN/m;测量精度:0.01 mN/m
高精度自动滴液系统:高精密工业微量注液泵;滴液精度:0. 1μl
接触角高精密仪器校准片:德国原装进口接触角角度校准标准片3°5°8° 60°90°120°115°


接触角专业测量方法

座滴法(sessile drop);

薄膜法(lamella method);

掳泡法(Captive bubble method);

包覆纤维法(wetted fiber);

纤维座滴法(sessle fiber drop);


软件概述

接触角多元化分析方式:全自动拟合法,半自动拟合法,手动水平测量,手动斜面测量,宽高测量法,凹凸面测量法,人工切线法等
多元化软件计算方法:圆环拟合法(40度以下);椭圆拟合法(40-120度);Young-Lapalacer拟合法(120度以上)
表面自由能计算:Fowks法,OWRK法,ZismanPlot法,EOS法(软件中预装部分液体数据库,可自行建立液体性能参数)


2021-02-03 11:50:19 385 0
接触角测量仪测量动态接触角有哪些方法?

       在接触角测量的专业领域,大家普遍认为单纯测量静态接触角不足以表征材料表面的润湿特性,只有通过测量包括前进接触角和后退接触角值在内的动态接触角才能为表征待测体系的润湿特性提供更完整的信息。测量实际材料表面上的接触角比估算理想表面上的接触角更有意义。


      目前使用光学接触角测量仪测量动态接触角的方法有三种:

       一、斜板法,实验是将一个液滴置于待测的样品表面后,利用倾斜台缓慢地倾斜样品表面,同时跟踪并记录液滴形状、接触角和位置的变化。

       二、离心旋转台法(即滞留力天平法),实验是将一个液滴置于待测的样品表面后,利用离心旋转台使液滴沿着圆周转动,同时跟踪并记录液滴形状、接触角和位置的变化。

       三、加液-减液法,实验是将一个液滴置于待测的样品表面后,把注射针插入液滴内部,缓慢的注射液体使液滴体积增大到一定数值,之后再缓慢的回吸液体使液滴体积减小到一定数值,同时跟踪并记录液滴形状、接触角和位置的变化。

       

       三种方法测量动态接触角的特点总结如下:

       斜板法测量动态接触角的特点是不仅能测量前进角和后退角变化的全过程,而且能得到液滴在材料表面上的滚动角。

       滞留力天平法测量动态接触角的特点是不仅能测量到前进角和后退角变化的全过程,而且能得到液滴在材料表面上的滞留力。这个方法既适用于疏水材料也适用于亲水材料。

       加液-减液法测量动态接触角的特点是能测量到前进角和后退角变化的全过程,而且不需要额外的特殊附件,投资较低,缺点是液滴形状会受到注射针的影响而导致接触角计算的误差。


2021-07-15 10:58:47 664 0
动态接触角测试仪技术参数

具体应用领域举例︰

1、金属焊接过程中,检测焊剂对金属的附着力︰

2、印刷行业油墨,金属,纸张之间的附着力︰

3、粘接剂与固体间的粘接程度研究︰

4、航天工业空中雨雾对飞机基体的润湿程度检测︰

5、军事科学中弹片在空气中与雨雾接触角的测定︰

6、石油开采过程中,注人添加剂与原油中固体前进角,后退角的测定︰

7、纳米材料与不同活性集问润湿性的测定、研究︰

8、铝箔亲水角的测定︰

总之,该体器应用范围之广泛不能在此一一举例。


仪器参数

接触角测量范围:0-180°
接触角测量精度:±0.1°
表界面张力测量范围:0-1000mN/m;测量精度:0.01 mN/m
高精度自动滴液系统:高精密工业微量注液泵;滴液精度:0. 1μl

光学系统:0.7X-0.5X高清晰卡位变倍镜头

视频系统:USB3.0摄像机+PC软控40帧/秒(可选100帧/秒、300帧/秒、1000帧/秒或更高)


接触角专业测量方法

座滴法(sessile drop);

薄膜法(lamella method);

掳泡法(Captive bubble method);

包覆纤维法(wetted fiber);

纤维座滴法(sessle fiber drop);


软件概述

接触角多元化分析方式:全自动拟合法,半自动拟合法,手动水平测量,手动斜面测量,宽高测量法,凹凸面测量法,人工切线法等
多元化软件计算方法:圆环拟合法(40度以下);椭圆拟合法(40-120度);Young-Lapalacer拟合法(120度以上)
表面自由能计算:Fowks法,OWRK法,ZismanPlot法,EOS法(软件中预装部分液体数据库,可自行建立液体性能参数)


2021-02-03 15:03:48 388 0
超疏水材料的接触角测量

      超疏水表面指难以被水润湿的表面,在这种表面上水滴难以铺展,水总是团聚在一起。 测量液滴和材料的接触角是评价材料表面润湿性的主要方法,超疏水材料的接触角甚至会大 于 150°。为了全面的评价超疏水材料的润湿性,在实验中有必要测量液滴的前进角、后退 角和滚动角等动态过程。 

      使用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积, 利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻 弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。 

      非接触式注液是指通过注射器上的喷嘴,利用注射泵的脉冲推射液滴,使液滴直接落到 材料表面上。这种注液方式完全避免了液滴在注射针针头上的粘附,彻底解决了液滴转移的 问题。 

图 1 非接触式注液(注射时间约 200ms) 

      在液体转移到材料表面之后,仪器会自动拍下一张清晰的照片。为了准确的计算液滴的 接触角,我们建议使用 Laplace-Young 算法。因为在超疏水材料上的液滴接触角很大,呈现 很好的轴对称性,在诸多接触角计算的模型中,Laplace-Young 算法全面考虑到重力、密度 等因素对液滴形状的影响,所以它是Z为准确的测量水平的超疏水材料表面上液体接触角的 计算方法。 

图 2 Laplace-Young 法计算接触角 

      为了全面的评价超疏水材料的润湿性,除了测量液滴在在水平的材料表面上的接触角之 外,我们往往还要测量液滴在材料倾斜表面上的前进角、后退角、和滚动角。使用自动倾斜 台可以方便的完成这种测量。这里需要注意到液滴处于倾斜表面上在重力作用下已经不再对 德菲知识分享 称,所以 Laplace-Young 法一般不再适用,此时需要使用能够对液滴表面分段拟合计算的一些专用方法,例如 Truedrop 算法。

 

图 3 倾斜台测量动态接触角和滚动角

如果仪器没有配置自动倾斜台,那么可以考虑使用注液-吸液法测量前进角和后退角。 在注液和吸液过程中注射针可能会偏离液滴的ZX,这时如果注射针架可以在 X/Y/Z 三轴精密移动,将会方便的调整注射针的位置,使得注射针对液滴形状的影响降到Z小,能够较为 准确的测量前进角和后退角的数值。 

图 4 注液-吸液法测量动态接触角 

Z后在进行数据分析的时候,接触角的数值变化往往和三相接触点位置的变化紧密相关。 所以在动态数据图表上Z好同时显示接触角的变化曲线和三相接触点位置的变化曲线。这样才能完整准确的描述前进角和后退角的形成及变化过程。

 图 5 动态接触角数据曲线图 加液-减液法



(来源:北京东方德菲仪器有限公司)

2019-07-19 13:22:16 894 0
大平台动态接触角测定仪

产品简介

 北京哈科从生产首台JY-82接触角测定仪开始已经历了30多个春秋。产品从单一规格到现在已形成不同规格与用处多种系列多种领域品种齐全的各种型号。全方位面对不同行业的用户。产品外形美观大方、质量可靠、操作简便灵活、软硬件技术领先。完全可以和国内外同类产品相媲美。产品先后荣获国级、地市级多种奖项。参与制定了国家标准GB/T24368-2009《玻璃表面疏水污染物检测接触角测量法》

 本公司产品专业应用于胶体与界面化学、粉体材料、高分子材料、包装材料及各种新材料的性能检测与科学研究。本公司仪器可进行表、界面张力测定,动态表面张力测定,超低界面张力测定。板材接触角测定,纸张木材接触角测定,薄膜接触角测定,单纤维接触角测定,粉体接触角测定,碳素接触角测定,滚动接触角测定,动态接触角测定等等。表面张力测定方法齐全已形成吊环法、吊片法、悬滴法、坐滴法、ZD泡压法、滴体积法。接触角测定方法有坐滴法、掳泡法、插入法、膨胀收缩法、转落法等。

 北京哈科依托国际上先进同行产品优势取长补短,采用新科学理论模型为人类打造出胶体与界面化学检测仪器精品。

HKCA-PV35接触角测定仪产品参数

 

l  样品台尺寸(mm):100*100

l  接触角测量范围:0-180°

l  接触角显示精度:±0.01°

l  接触角测量精度:±0.1°

l  界面张力测定方法:悬滴法

l  表面/界面张力测量范围:0-1000mN/m

l  光学系统:0.7X-0.5X高清晰卡位变倍镜头

l  视频系统:USB3.0摄像机+PC软控40帧/秒(可选100帧/秒、300帧/秒、1000帧/秒或更高)

l  仪器外形尺寸(mm):160*710(可伸缩扩展)

l  仪器重量:35kg

l  测量软件:HKCA35

l  电源:220V/3A/50Hz

l  测量温度:室温(高温、恒温、恒温可选定)

l  测量方法:自动圆环法、自动椭圆法

l  电动定位精度:±0.1mm

l  注射系统器移动行程:60mm

HKCA-PV35接触角测定仪基本功能

l    自动液滴零时刻识别

l    自动液滴形成

l    实时动态采集

l    实时动态结果显示

l    实时动态曲线生成

l    预设测量数量

l    自动着滴控制

l    三态组合

l    极座标旋转体系,园晶多点测量

 

HKCA-PV35接触角测定仪可附加选项

l    表/界面张力(悬滴法)

l    动态接触角(扩张收缩法)前进角、后退角

l    固体表面自由能

l    多通道系统



2021-02-03 15:09:49 278 0
动态接触角的三种测量方法

       目前使用光学接触角测量仪测量动态接触角的方法有倾斜台法、离心转台法和加液/减液法三种。

       DY种方法是倾斜台法又称斜板法。实验是将一个液滴置于待测的样品表面后,利用倾斜台缓慢地倾斜样品表面,同时跟踪并记录液滴形状、接触角和位置的变化。倾斜刚开始时液滴不一定发生移动,但是形状会发生变化,使得下方的接触角不断地增大,而上方的接触角则不断地变小,当表面倾斜到一定角度时,液滴开始发生滚动或滑动,此时液滴下方三相接触点发生运动之前对应的接触角就是ZD前进角,而液滴上方三相接触点发生运动之前对应的接触角就是最小后退角。当液滴整体刚刚开始发生滚动(滑动)时的表面倾斜角,就叫滚动角(滑动角)。

       使用倾斜台法测量动态接触角的特点是不仅能测量到前进角和后退角变化的全过程,而且能得到液滴在材料表面上的滚动角。

       第二种方法是离心转台法又称滞留力天平法,实验是将一个液滴置于待测的样品表面后,利用离心转台使液滴沿着圆周转动,同时跟踪并记录液滴形状、接触角和位置的变化。随着转速的不断增加,液滴整体受到的离心力越来越大,液滴开始发生形状变化,并且顺着旋转半径的方向在材料表面上滑动的趋势越来越明显,直到发生滑动。在形状变化过程中外侧的接触角不断地增大,而内侧的接触角则不断地变小,当转速达到一个临界值时,液滴开始发生整体滑动,此时液滴外侧三相接触点发生运动之前对应的接触角就是ZD前进角,而液滴内侧三相接触点发生运动前对应的接触角就是最小后退角。根据转速和半径计算得到的离心力就等于液滴在材料表面上的滞留力。

       使用离心转台法测量动态接触角的特点是不仅能测量到前进角和后退角变化的全过程,而且能得到液滴在材料表面上的滞留力。这个方法不仅适用于疏水材料也适用于亲水材料。 

       第三种方法是加液-减液法又称注液-吸液法,实验是将一个液滴置于待测的样品表面后,把注射针插入液滴内部,缓慢的注射液体使液滴体积增大到一定数值,之后再缓慢的回吸液体使液滴体积减小到一定数值,同时跟踪并记录液滴形状、接触角和位置的变化。在液体注射过程中两侧的接触角不断地增大,直到三线接触点发生移动时的亚平衡状态。而在回吸液体的过程中两侧的接触角则不断地变小,直到三线接触点发生移动时的亚平衡状态。如果液体注射和回吸的速度足够缓慢,三相接触点运动处于一个亚平衡状态,此时得到的接触角分别为ZD前进角和最小后退角。

       使用加液-减液法测量动态接触角的特点是能测量到前进角和后退角变化的全过程,而且不需要额外的特殊附件,投资较低。缺点是液滴形状会受到注射针的影响而导致接触角计算的误差。


2020-12-11 14:36:17 1140 0
润湿性与动态接触角

      广义的润湿是指表面上一种流体被另一种流体取代的过程。在通常情况下润湿是指在固 体表面上空气被水或其他液体取代的过程。为了评价材料表面的润湿性,我们可以采用测量 液体在固体材料表面上接触角的方法。 

      在材料表面上附着的液滴会呈现出一定形状,这个形状取决于固体-液体-气体各界面之 间的张力平衡。1805 年 Thomas Young 首先提出了一个方程描述这个平衡态。

图 1 Young 方程 

      就接触角的数值而言,接触角越小说明固体表面越容易被液体润湿,接触角越大说明固 体表面越难被液体润湿。 

      对于理想的固体表面,当液滴在表面达到力学平衡后,只有一个符合 Young 方程的接触角值。然而,实际上材料表面都是非理想的,材料表面会有一定的粗糙度,材料表面的化学性质不均一甚至被污染,所以必然会出现接触角滞后的现象。所谓接触角滞后就是指液滴在 润湿材料表面的过程中,所呈现出的接触角不断变化的现象。在真实条件下测量出的接触角 值总是在处于Z大前进角和Z小后退角之间的一个数值。

      由于以上提到的原因,我们知道接触角的测量结果是和液滴形成的过程直接相关的,液 滴形状大小的变化和三相接触线的运动会直接反应到前进角和后退角的测量结果上。在某些 材料表面上测量前进角和后退角的差值甚至达到 90°以上。测量动态接触角能够定量的描 述接触角滞后的现象,为液体在实际材料表面上的润湿研究提供了有力的方法。 

      在接触角测量的专业领域,大家普遍认为单纯测量静态接触角不足以表征材料表面的润湿特性,只有通过测量包括前进接触角和后退接触角值在内的动态接触角才能为表征待测体 系的润湿特性提供更完整的信息。测量实际材料表面上的接触角也比估算理想表面上的接触角更有意义。

      目前使用光学接触角测量仪测量动态接触角的方法有倾斜台法、离心转台法和加液/减 液法三种。

      diyi种方法是倾斜台法又称斜板法。实验是将一个液滴置于待测的样品表面后,利用倾 斜台缓慢地倾斜样品表面,同时跟踪并记录液滴形状、接触角和位置的变化。倾斜刚开始时 液滴不一定发生移动,但是形状会开始发生变化,使得下方的接触角不断地增大,而上方的 接触角则不断地变小,当表面倾斜到一定角度时,液滴开始发生滚动或滑动,此时液滴下方 三相接触点发生运动之前对应的接触角就是Z大前进角,而液滴上方三相接触点发生运动之 前对应的接触角就是Z小后退角。当液滴整体刚刚开始发生滚动(滑动)时的表面倾斜角, 就叫滚动角(滑动角)。


图 2 倾斜台法测量动态接触角和滚动角 

      使用倾斜台法测量动态接触角的特点是不仅能测量到前进角和后退角变化的全过程,而 且能得到液滴在材料表面上的滚动角。

      第二种方法是离心旋转台法又称滞留力天平法,实验是将一个液滴置于待测的样品表面 后,利用离心旋转台使液滴沿着圆周转动,同时跟踪并记录液滴形状、接触角和位置的变化。 随着转速的不断增加,液滴整体受到的离心力越来越大,液滴开始发生形状变化,并且顺着 旋转半径的方向在材料表面上滑动的趋势越来越明显,直到发生滑动。在形状变化过程中外 侧的接触角不断地增大,而内侧的接触角则不断地变小,当转速达到一个临界值时,液滴开 始发生整体滑动,此时液滴外侧三相接触点发生运动之前对应的接触角就是Z大前进角,而 液滴内侧三相接触点发生运动前对应的接触角就是Z小后退角。根据液滴体积、转速和旋转 半径计算得到的离心力就等于液滴在材料表面上的滞留力。

上图从左至右转速和离心力逐渐增加

图 3 离心转台法测量动态接触角 

使用离心转台法测量动态接触角的特点是不仅能测量到前进角和后退角变化的全过程,而且能得到液滴在材料表面上的滞留力。这个方法不仅适用于疏水材料也适用于亲水材料。 

      第三种方法是加液-减液法又称注液-吸液法,实验是将一个液滴置于待测的样品表面后, 把注射针插入液滴内部,缓慢的注射液体使液滴体积增大到一定数值,之后再缓慢的回吸液 体使液滴体积减小到一定数值,同时跟踪并记录液滴形状、接触角和位置的变化。在液体注 射和回吸过程中两侧的接触角不断地变化,三线接触点同时发生移动。如果液体注射和回吸 的速度足够缓慢,三相接触点运动接近一个亚平衡状态,过程中可以得到Z大前进角和Z小后退角。

图 4 加液-减液法测量动态接触角 

      使用加液-减液法测量动态接触角的特点是能测量到前进角和后退角变化的全过程,而 且不需要额外的特殊附件,投资较低。缺点是液滴形状会受到注射针的影响而导致接触角计算的误差。


(来源:北京东方德菲仪器有限公司)


2019-07-15 14:24:54 831 0
北京哪里可以做水接触角测量 ?
 
2011-06-08 01:59:41 341 2
测量超疏水材料接触角遇到的ZD障碍

      用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积,利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。

       非接触式注液是指在注射器上安装一个针嘴,通过注射泵的脉冲推射液滴,使液滴直接落到材料表面上。这种注液方式完全避免了液滴在注射针针头上的黏附,彻底解决了液滴转移的问题。

       非接触式注液打破了传统注射单元只能控制注射速度的局限,WM地将注射速度和注射加速度结合在一起,解决了超疏水材料接触角测量的ZD障碍—液滴“包针”问题 。


2020-09-09 14:46:56 281 0
接触角测量仪的应用:超疏水材料的接触角测量

       超疏水表面指难以被水润湿的表面,在这种表面上水滴难以铺展,水总是团聚在一起。测量液滴和材料的接触角是评价材料表面润湿性的主要方法,超疏水材料的接触角甚至会大于 150°。为了全面的评价超疏水材料的润湿性,在实验中有必要测量液滴的前进角、后退角和滚动角等动态过程。
       使用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积,利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。
       非接触式注液是指通过注射器上的喷嘴,利用注射泵的脉冲推射液滴,使液滴直接落到材料表面上。这种注液方式完全避免了液滴在注射针针头上的粘附,彻底解决了液滴转移的问题。

       在液体转移到材料表面之后,仪器会自动拍下一张清晰的照片。为了准确的计算液滴的接触角,我们建议使用 Laplace-Young 算法。因为在超疏水材料上的液滴接触角很大,呈现很好的轴对称性,在诸多接触角计算的模型中,Laplace-Young 算法全面考虑到重力、密度等因素对液滴形状的影响,所以它是Z准确的测量水平的超疏水材料表面上液体接触角的计算方法。

       为了全面的评价超疏水材料的润湿性,除了测量液滴在在水平的材料表面上的接触角之外,我们往往还要测量液滴在材料倾斜表面上的前进角、后退角、和滚动角。使用自动倾斜台可以方便的完成这种测量。这里需要注意到液滴处于倾斜表面上在重力作用下已经不再对称,所以 Laplace-Young 法一般不再适用,此时需要使用能够对液滴表面分段拟合计算的一些专用方法,例如 Truedrop 算法。

       如果仪器没有配置自动倾斜台,那么可以考虑使用注液-吸液法测量前进角和后退角。在注液和吸液过程中注射针可能会偏离液滴的ZX,这时如果注射针架可以在 X/Y/Z 三轴精密移动,将会方便的调整注射针的位置,使得注射针对液滴形状的影响降到Z小,能够较为准确的测量前进角和后退角的数值。

       Z后在进行数据分析的时候,接触角的数值变化往往和三相接触点位置的变化紧密相关。所以在动态数据图表上同时显示接触角的变化曲线和三相接触点位置的变化曲线。这样才能完整准确的描述前进角和后退角的形成及变化过程。


2020-06-01 09:43:41 388 0
纳米亲水超硬耐沾污涂料材料是什么?
 
2018-11-20 17:49:08 286 0
高分子亲水塑料
 
2018-04-13 12:54:25 330 2

9月突出贡献榜

推荐主页

最新话题