仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

LM567芯片简介

ZTing199155 2006-06-20 11:46:32 523  浏览
  •  

参与评论

全部评论(1条)

  • supercathy小花 2006-06-21 00:00:00
    音调解码器567详解 -------------------------------------------------------------------------------- 567音调解码器内含锁相环,可以广泛用于BB机、频率监视器等各种电路中。 音调解码器 本文讨论锁相环电路,介绍NE567单片音调解码器集成电路。此音调解码块包含一个稳定的锁相环路和一个晶体管开关,当在此集成块的输入端加上所先定的音频时,即可产生一个接地方波。此音调解码器可以解码各种频率的音调。例如检测电话的按键音等。 此音调解码器还可以用在BB机、频率监视器和控制器、精密振荡器和遥测解码器中。 本文主要讨论Philip的NE567音调解码器/锁相环。此器件是8脚DIP封装的567型廉价产品。图1所示为这种封装引脚图。图2所示为此器件的内部框图,可以看出,NE567的基本组成为锁相环、直角相位检波器(正交鉴相器)、放大器和一个输出晶体管。锁相环内则包含一个电流控制振荡器( CC0)、一个鉴相器和一个反馈滤波器。 Philip的NE567有一定的温度工作范围,即0至+70℉。其电气特性与Philip的SE567大致相同,只是SE567的工作温度为-55至125℉。但是,567已定为工业标准音调解码器,有其它若干个多国半导体集成电路制造厂同时生产此集成块。 例如,Anal·g Device提供三种AD567,EXar公司提供5种XR567,而National Sevniconductor提供3种LM567。这类不同牌号的567器件均可在本文讨论的电路中正常工作。因此,本文以下将这类器件通称为567音调解码器。 567基础 567的基本工作状况有如一个低压电源开关,当其接收到一个位于所选定的窄频带内的输入音调时,开关就接通。换句话说567可做精密的音调控制开关。 通用的567还可以用做可变波形发生器或通用锁相环电路。当其用作音调控制开关时,所检测的ZX频率可以设定于0.1至500KHz内的任何值,检测带宽可以设定在ZX频率14%内的任何值。而且,输出开关延迟可以通过选择外电阻和电容在一个宽时间范围内改变。 电流控制的567振荡器可以通过外接电阻R1和电容器C1在一个宽频段内改变其振荡频率,但通过引脚2上的信号只能在一个很窄的频段(Z大范围约为自由振荡频率的14%)改变其振荡频率。因此,567锁相电路只能“锁定”在预置输入频率值的极窄频带内。567的积分相位检波器比较输入信号和振荡器输出的相对频率和相位。只有当这二个信号相同时(即锁相环锁定)才产生一个稳定的输出,567音调开关的ZX频率等于其自由振荡频率,而其带宽等于锁相环的锁定范围。 图3所示为567用作音调开关时的基本接线图。输入音调信号通过电容器C4交流耦合到引脚3,这里的输入阻抗约为20KΩ。插接在电源正电源端和引脚8之间的外接输出负载电阻RL与电源电压有关,电源电压的Z大值为15V,引脚8可以吸收达100mA的负载电流。 引脚7通常接地,面引脚4接正电源,但其电压值需Z小为4.75V,Z大为9V。如果注意节流,引脚8也可接到引脚4的正电源上。 振荡器的ZX频率(f0)也由下式确定: f0=1.1×(R1×C1)··············(1) 这里电阻的单位是KΩ,电容的单位是uF,f0的单位为KHz。 将方程(1)进行相应移项,可得电容C1之值: C1=1.1/(f0×R1)··············(2) 利用这二个公式,电容和电阻的值均可确定,电阻R1之值应在2至20KΩ的范围内。然后,再由(2)式确定电容值。 此振荡器在引脚6上产生一个指数型锯齿波,而在引脚5上则产生一个方波。此音调开关的带宽(以及PLL的锁定范围)则由C2及567内部的一个3.9KΩ电阻共同确定。而此电路的输出开关延迟则由C3及集成电路内的一个电阻共同确定。表1列出了Philip的NE567的电气特性,所有其它厂家不同牌号的567芯片,其特性与表1大致相同。 表一 振荡器 图4和图5所示为如何使567产生精密的方波输出。从引脚6处可以获得非线性锯齿波,但其用途有限,不过,在引脚5上可获得性能的方波。如图4所示,其输出方波的上升时间和下降时间为20nS。 此方波的峰到峰幅值等于电源电压减去1.4V。这种方波发生器和负载特性,任何大于1KΩ的电阻性负载均不会影响电路的功能。另外,此方波发生器的输出也可以加至低阻抗负载,如图5所示,引脚8输出端的峰值电流高达100mA,但波形略差。 利用前述的振荡频率和电容计算公式(1)和(2),即可确定这类振荡器的各种参数。同样的,R1必须限制在2至20KΩ的范围内。为使计算简化,节约时间,决定振荡频率的元件数值也可以由图6所示的诺模图上直接读出。 例如,需要此567振荡器工作在10KHz,C1和R1的值可以是0.055uF和2KΩ,或者是0.0055uF和20KΩ。 在567的引脚2上加一控制电压,即可使振荡器的工作频率在一个窄范围内微调百分之几。如果加上控制电压,引脚2应接去耦电容C2,其值应大致为C1的2倍。 图4和图5的电路可以用不同的方式修改,如图7至图10所示。在图7中,占空比或传号/空号之比对所产生的波形而言是完全可变的,借助微调电位器R2,其变化范围为27∶1至1∶27。另外,在每个工作周期内,C1交替充放电,充电是经电阻R1、二极管D1和R2的左侧,而放电则通过电阻R1、二极管D2和R2的右侧。只是随着传号/空号比率的改变,工作频率略有改变。 图8所示的电路可以产生正交方波,此振荡器在引脚5和8上的二个方波输出有90°的相位差。在此电路中,输入引脚3通过接地。如果在引脚3上加有2.8V以上的偏置电压,则引脚8上的方波有180°相移。 图9和图10所示为定时电阻值Z大可为500KΩ左右的振荡器的电路。这样,定时电容C1之值即可按比例减小。在这二个电路中,在567的引脚6和R1、C1的节点间接有一个缓冲级。 在图9中,这个缓冲级是一级晶体管射极跟随器。踞遗憾的是,这一级的引入使波形的对称性略差。相对应的是,图10所示电路以一级运算放大器跟随器作为缓冲级。这样就不影响波形的对称性。 567的五个输出 567的五个输出端子。其中二个(引脚5和6)提供振荡器的输出波形,而第三个输出端子引脚8,则如前所述为567的主要输出口。其余的二个输出端为此解码器的引脚1和2。 引脚2与锁相环的相位检波器输出端相接,在内部被静态偏置到3.8V。当567接收到带内输入信号时,此偏置电压随之改变,且在典型的0.95至1.05倍振荡器自由振荡频率范围内,偏置电压的变化与输入信号频率呈线性关系。其斜率为每频偏百分之一有20mV(即20mV/%0f f0)。 图11所示为当567作为音调开关时,引脚2输出和引脚8输出之间的时间关系。图中所示为在两种带宽(14%和7%)下的时间关系。 引脚1给出567正交相位检波的输出。当音调锁定时,在引脚1上的平均电压是此电路带内输入信号幅度的函数,如图12的传输函数所示。当引脚1上的平均电压被下拉到3.8V门限值之下时,集电极在引脚8上的内部输出晶体管就导通。 带宽的确定 当567被用作音调开关时,其带宽(ZX频率的百分数)的Z大值约为14%。此值与25至250mV均方根值的带内信号电压成正比。但是,当信号电压由200变至300mV时,则不影响带宽。同时,带宽反比于ZX频率f0和电容器C2的乘积。实际带宽为: BW=1070 BW的单位为ZX频率的百分数(%),而且,Vi≤200mVRMS。式中Vi的单位为V-RMS,C2的单位为uF。 通过试探和误差处理来选择C2,一开始可选择C2的值为C1的2倍。随后可增加C2的值以减小带宽,也可减小C2的值以增加带宽。 检测带宽的对称性 所谓检测整容的对称性就是测量此带宽与ZX频率的对称程度。对称性的定义如下: (fmax+fmin-2f0)/2f 这时fmax和fmin是相应于所检测频带二边沿的频率。 如果一个音调开关的ZX频率为100KHz,而带宽为10KHz,频带的边沿频率对称于95KHz和105KHz,这样,其对称性为0%。但是,如果其频带相当不对称,边沿频率为100KHz和110KHz,其对称值增加到5%。 如果需要,可以用微调电位器R2和47KΩ的电阻R4在567的引脚2上加一外偏微调电压,以使对称值减至0,如图13所示。将电位器的中间滑动触点向上移则ZX频率降低,向下移则ZX频率升高。硅二极管D1和D2用作温度补偿。 音调开关设计 以图3所示的典型电路为基础,很容易设计出实用的音调开关。频率控制元件电阻R1和电容C1各值的选定可利用图6的诺模图。电容C2容量的选择可以上述讨论为基础,由实验确定。一开始可用其容量为C1的两倍的电容,然后,若有需要可调整其值,以给出所要求的信号带宽。如果对于频带的对称性要求严格,可如图13所示,加一对称性调整级。 Z后,使C3之值为C2的2倍。并检查此电路的响应。如果C3太小,引脚8上的输出可能会在开关期间因过渡历程而发生脉冲。如C3选择适当,则整个电路设计完毕。 多路转接开关 可以从一个音频输入馈入任意多个567音调开关,以构成任何所希望规模的多音调开关网络。图14和图15是二种实用的两级开关网络。 在图14中的电路有双音解码器的作用。在二个输入输入信号中有任一个出现时,都可激励出一个信号输出。图中,二个音调开关是由是一个信号源激励的,而其输出则由一个CD4001B型CMOS门集成块来进行或非处理。图15所示为二个567音调开关并行联接,其作用有中一个相对带宽为24%的单个音调开关。在此电路中,IC1音调开关的工作频率设计成比IC2音调开关的工作频率高1.12倍。因此,它们的转接频带是叠合的。

    赞(13)

    回复(0)

    评论

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

LM567芯片简介
 
2006-06-20 11:46:32 523 1
常见芯片开封技术及仪器简介

常见芯片开封技术及仪器简介

 

Wayne Zhang(似空科学仪器(上海)有限公司)

2022.10.11

 

       芯片失效分析(FA, Failure Analysis)的常见方法中,包含非破坏性分析(无损检测,如超声波、X-RAY分析)、破坏性物理分析(有损检测,如芯片开封/开盖、切片制样)、I-V电气特性分析、EMMI微光检测等。

       其中芯片开封/开盖分析是DPA(破坏性物理分析)的重要手段,是研究芯片封装效果和技术的一种必要方法。

       本文简单概述常见芯片开封技术和仪器。

 

 

 

    1、机械开封   

 

其原理是用应力直接去除芯片的封装材料,属于物理开封。常规机械工具及专用切割、研磨、铣刨、抛光等仪器就可应用于这种方式。

其优点是简单直观,根据精度要求,可选仪器价格范围很宽(甚至拿把螺丝刀也可以,在特殊情况下)。

缺点是开封的几何形状不太容易控制,总体来讲精度比较低,容易导致对应力敏感的样品破碎,或者由于仪器需要用耗材而造成“二次污染”。

当然,这个领域也有精度可达1微米,几何形状可编程的仪器,比如,美国ALLIED公司的铣削、研磨、抛光一体机X-PREP。但这种高端仪器,价格几十万美元,且对“敏感单位”禁运。

 

 

 

点击了解更多 //                                                

 

 

 

 

 

    2、化学开封   

 

其原理是用硝酸、硫酸及其混合液对芯片封装材料进行腐蚀,属于化学开封

优点是没有物理应力,不会造成样品破碎,并且不会伤害硅等耐酸的半导体材料的电气特性。

缺点是所用材料为强酸,对人体危害大,建立实验室和购买耗材收到政府严格管控,开封速度较慢,如果芯片中有耐酸性不好的走线则需要特殊处理。另外,其开封效果受到四种参数的影响,包括酸配比、流速、温度、腐蚀时长,对操作人员有一定的经验要求。

      目前该领域没有国产的专用仪器,市面上常见的是美国NISENE的JetEtch系列和美国RKD的Elite Etch系列。

 

 

 

点击了解更多 //                                                

 

 

 

 

    3、激光开封   

 

其原理是用高能激光灼烧局部区域导致塑封材料粉碎脱落。

优点是效率高,几何形状可编辑,没有二次污染,不需要强酸暴露,属于物理开封。

缺点是会产生局部高温,容易导致半导体材料电气属性失效,所以一般只能开封到半导体材料表面,后续残留封装材料需要其它手段去除。

该领域的专用设备供应商国内外都有,目前国产化程度越来越高,价格相比进口设备有了明显下降,并且性能和实用性已经和进口设备没有差距。

 

 

 

点击了解更多 //                                                

 

 

    4、等离子开封   

 

其原理是通过电场功率将反应气体离子化后与需要去除的材料接触并产生化学反应而挥发。总体上属于化学开封,也有同时采用化学和物理机制的。

优点是没有物理应力,精细化程度高,不攻击敏感材料,可到达细孔凹陷部位。

缺点是速度慢,价格昂贵。

      该领域的专用设备供应商主要来自欧洲和美国。

 

 

 

 

 

点击了解更多 //                                                

 

 

 

    5、离子开封   

 

其原理是通过高压电场加速带电离子,用其轰击目标材料,使它们脱落。本质上是物理开封,带有某些化学效果。

优点是精度非常高,可处理多种目标材料。

缺点是不容易控制几何形状,速度慢,仪器价格昂贵。

该领域的专用设备供应商主要来自日本、欧洲和美国。

 

 

点击了解更多 //                                                

 


2022-11-20 14:58:54 295 0
金刚石 简介
 
2010-10-29 04:48:12 705 2
长江三峡简介
 
2005-12-31 03:25:24 505 2
四大名著简介
四大名著简介 帮忙
2005-11-23 01:04:06 329 2
纳米材料简介?
 
2016-05-27 06:49:46 266 1
九大行星简介
 
2018-04-09 19:11:59 367 1
伦琴简介
 
2008-03-07 00:28:21 278 3
磁翻板液位计的简介

磁翻板液位计是一种常用的液位测量设备,广泛应用于工业生产和流程控制中。它通过测量液体的高度来确定容器内液位的变化情况,从而实现对液位的监测和控制。

磁翻板液位计的工作原理基于浮子原理。它由一个浮子和一个磁性翻板组成。浮子通常由具有浮力的材料制成,如塑料或不锈钢。当液位上升时,浮子会随着液位的变化而上升,当液位下降时,浮子也会相应下降。磁性翻板则用于检测浮子的位置。

磁翻板液位计的磁性翻板通常由一个或多个磁性材料制成,如永磁体或铁磁体。当浮子上升到一定高度时,磁性翻板会被浮子吸引并翻转,从而改变其磁性方向。通过检测翻板的磁性方向,可以确定液位的高度。

磁翻板液位计具有一些优点,使其成为液位测量的理想选择。首先,它具有较高的精度和稳定性,能够准确地测量液体的高度变化。其次,磁翻板液位计不受液体性质的影响,适用于各种液体,如水、油、酸、碱等。此外,它还具有结构简单、安装方便、维护成本低等优点。

然而,磁翻板液位计也存在一些局限性。首先,由于浮子和翻板之间的物理接触,磁翻板液位计在高温和高压环境下的使用可能会受到限制。其次,由于液位计的工作原理,其测量范围通常较窄,不能满足特定应用中的要求。此外,磁翻板液位计对于粘稠液体和颗粒物质的测量也存在一定的困难。

总的来说,磁翻板液位计是一种可靠且广泛应用的液位测量设备。它通过浮子和磁性翻板的组合,实现了对液体高度的准确测量。虽然磁翻板液位计具有一些局限性,但其优点仍然使其成为工业生产和流程控制中不可或缺的工具。随着技术的不断进步,磁翻板液位计的性能将进一步提高,满足更广泛的应用需求。


2023-08-21 15:14:36 116 0
气体发生器设备简介

近年来随着国民经济的不断发展,气相色谱仪这种分析仪器应用越来越普及,生产气相色谱仪气体发生器的厂家也越来越多,市场竞争更加激烈,加之近年原材料的价格不断攀升,从而使气体发生器的性能指标、产品质量也更加参差不齐。下面仅就市场上常用的三种气体发生器(氢气发生器氮气发生器、空气压缩机)的结构、特点做简单的分析,供大家参考:

    一氮气发生器

    氮气发生器从制氮原理上来分有中空纤维膜分离法、变压吸附法、电化学分离法三种。

    1)中空纤维膜分离法直接产生的氮气纯度一般在99%左右,流量范围为0-10升/min,市场价格大约在几万到十万。

    2)变压吸附法直接产生的氮气流量范围更宽,纯度一般也99%,市场价格大约在10万以内。

    3)电化学分离法直接产生的氮气流量在0.3-0.5L/min,氧含量可以控制在几个ppm,气体露点根据吸附剂效能可以达到-55℃。价格为1万左右。目前国内配套气相色谱仪的氮气发生器主要是该类型的。

    电化学分离法的氮气来自于在电解分离池,空气中的杂质气体经过电离池后,在电解液和贵金属及电场作用下被分离。电离池内电解液主要为KOH或NaOH与蒸馏水配制而成,某些厂家为了降低制造成本,选用低价格的劣质不锈钢,造成电离池极易损坏,并降低了氮气的纯度,影响到仪器的正常使用。同时,电化学分离法制造氮气还要求整个系统有完善的压力控制,否则在突然断电停机时,电解分离池内没有电场的作用,空气不能被分离,输出将的是大量的空气,如果不能及时的关闭氮气输出,大量的空气直接进入色谱柱将造成色谱柱提前损坏。所以在氮气输出气路中增加断电保护切换阀是必须的。


2022-03-25 13:55:05 138 0
氮吹仪原理--简介

氮吹仪也叫氮气吹干仪、自动快速浓缩仪等,该仪器通过将氮气快速、连续、可控的吹向加热样品的表面,使待处理样品中的水分迅速蒸发、分离,从而实现羊皮的无氧浓缩,同时,该仪器能够保持样品的纯净,从而达到快速分离纯化的效果。氮吹仪不仅操作简单,而且可以同时处理多个样品,这就大大缩短了检测时间。从而,它得到了广泛的应用。


2.氮吹仪原理--结构组成

氮吹仪主要包括气体分配室、气针、高度调节支架、氮气接口、高度微调部件、支柱、固定组件、机箱、衬套、加热块、样品试管或试瓶等部件。试管通过带弹簧的试管夹和支撑盘来固定位置。根据试管大小和溶剂多少,各导气管可独立升降至合适的高度。


3.氮吹仪原理

氮吹仪利用氮气是一种不活泼的气体,能起到隔绝氧气的作用,如果加强它周围的空气流动,提高他的温度,就可以达到防止氧化的目的。同时采用对底部进行加温,而顶部用氮气或空气进行吹扫,通过氮气的快速流动可以打破液体上空的气液平衡,使液体挥发浓缩速度加快、迅速挥发,从而达到让样品快速浓缩的目的。


4.氮吹仪原理--应用

氮吹仪通过加热样液进行吹扫,使得待处理样品迅速浓缩,从而实现快速分离纯化,它主要应用于大批量样品的浓缩制备,诸如药wu筛选、激su分析、液相、气相以及质谱分析中的样品前处理制备。具体应用领域如下:

生物分析:如血清、血浆、血液、尿液等;

化学品残留、农残分析:如蔬菜、水果、谷物以及植物组织等;

环境分析:如饮用水、地下水和污染水样等;

商品检测:如检验克罗夫特等;

食品饮料:如牛奶、酒、啤酒等;

制药药检:如中药制药、制药质量控制等;


2022-01-14 13:37:29 421 0
废气治理技术简介

vocs废气是指一切刺激嗅觉器官引起人们不愉快及损害生活环境的气体物质,制药、工业、炼油等行业都会产生恶臭气体,对人们的生活环境以及身体健康均有不同程度的影响和伤害。近年来,我国也开始重视对vocs监测与FZ。而有研究表明,既使把恶臭物质去除90%,人的嗅觉所感觉臭气浓度却只减少了一半还少。这决定了vocs废气处理比FZ其他大气污染物更困难。

vocs废气的产生不是近来才有的问题,它的种类繁多,来源广泛。针对不同类型成分的vocs气体,vocs治理的方法也有所不同。

废气治理技术简介:

多相催化氧化技术:多相催化氧化技术通过选用特定波段的紫外线照射催化剂,产生催化作用,使得H2O分子和O2分子发生化学反应生成活性很强的-OH(羟基)、H2O2(过氧化氢)、O3(臭氧)等。而这些活性很强的基团氧化能力很强,能够使挥发性有机物(VOCs)分子链断裂,从大分子有机物裂解氧化变成小分子物质,不会产生二次污染;同时利用高能紫外光束,使空气中产生大量的自由电子,这些电子与H2O和O2结合,也会形成-OH、H2O2,将臭气硫化氢、氨气、甲硫醇和烃类化合物等分解氧化成H2O和CO2。

等离子催化技术:有机废气VOCs经等离子激发、离解活化,与经高能射线照射的催化剂产生催化氧化发硬,ZZ转化为H2O和CO2等无污染物质,从而达到净化废气的目的。该技术具有占地面积小、单位体积处理效率高以及能耗低等特点。


2021-01-21 16:05:29 242 0
色谱柱的简介
 
2018-12-03 16:11:39 357 0
压控振荡器的简介
 
2018-11-27 08:16:19 310 0
热膨胀的简介
 
2018-12-13 21:52:10 222 0
气相色谱柱的简介
 
2018-11-26 17:49:51 410 0
酶标板的简介
 
2018-11-21 00:06:55 281 0
物理吸附的简介
 
2018-11-20 13:38:33 294 0
反应釜的简介
 
2018-11-20 00:44:42 246 0
电位滴定法简介
 
2018-05-30 14:19:53 412 1

9月突出贡献榜

推荐主页

最新话题