PerkinElmer 推出 Volocity 6.0 高性能 3D 细胞成像
-
作为细胞成像领域的lingxian者,PerkinElmer 推出Z新的成像和分析软件平台;用户通过该平台的全新测量功能可以更好地理解细胞间和细胞内的关系
马萨诸塞沃尔瑟姆 - 2011 年 9 月 28 日 专注于提高人类及其生存环境的健康与安全的lingxian者 PerkinElmer, Inc.今天宣布发布Volocity 6.0,这是该公司 3D 细胞成像软件的Z新版本。
Volocity 软件具有一系列高性能的工具,可以用于探索、交互和发布来自细胞、组织和器官的 3D 成像数据,以及这些细胞、组织和器官随着时间的推移出现的行为变化,从而更深入地了解和研究细胞的相互作用。该软件是一款通用的解决方案。通过它提供的各种重要功能,用户可以查看、分析和验证使用各种共聚焦显微镜以及宽视野和高内涵筛选系统采集的 3D 荧光图像,而且该软件是完全集成的,您将感受到无缝的用户体验。
“PerkinElmer 致力于支持Z终将在诸如癌症和神经退行性疾病等疾病研究领域产生新疗法的各种新研究。”PerkinElmer 生物研发业务成像和检测解决方案副总裁 Achim von Leoprechting 说。“凭借新应用和增强的成像功能,新款 Volocity 6.0 软件将帮助科学家更好地理解疾病如何影响细胞以及潜在疗法如何影响疾病细胞和健康细胞。”
除了简单的细胞之外,Volocity 软件还可以根据生物学分类(如细胞核、细胞膜、细胞器和蛋白质)组织和关联测量,从而更加简单快速地执行分析和理解结果。此外,全新的界面能够使各种技术水平的用户执行复杂而富有挑战性的生物测量,将 3D 分析功能的应用范围扩展到更加广泛的潜在用户群体。
利用 Volocity 6.0 套件重要的新功能,用户可以:
受益于更多的交互和更简单的工作流,更便捷地获得定量 3D 答案。 更加简便地定义和测量细胞、细胞器或者其他生物结构及其之间的关系。 以 3D 形式测量横跨整个区域或者在生物相关部分(如细胞或细胞核)中结构间的距离。 对未在 Volocity 软件中采集的数据执行 FRAP 分析。 更便捷地导出多个已处理的图像,以在其他应用程序中显示和使用。关于 PerkinElmer, Inc.
PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的lingxian公司。据报道,该公司 2010 年收入约为 17 亿美元,拥有约 6,200 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请通过1-877-PKI-NYSE, 或访问 http://www.perkinelmer.com.cn/?tum_source=instrumentDotComNews&utm_campaign=Volocity6_Bio_2011CN。
Edelman(代表 PerkinElmer, Inc.)
Amanda L. Connolly
直拨电话:+1-404-832-6785
amanda.connolly@edelman.com来源: PerkinElmer, Inc.
新闻由 Acquire Media 提供
全部评论(0条)
热门问答
- PerkinElmer 推出 Volocity 6.0 高性能 3D 细胞成像
作为细胞成像领域的lingxian者,PerkinElmer 推出Z新的成像和分析软件平台;用户通过该平台的全新测量功能可以更好地理解细胞间和细胞内的关系
马萨诸塞沃尔瑟姆 - 2011 年 9 月 28 日 专注于提高人类及其生存环境的健康与安全的lingxian者 PerkinElmer, Inc.今天宣布发布Volocity 6.0,这是该公司 3D 细胞成像软件的Z新版本。
Volocity 软件具有一系列高性能的工具,可以用于探索、交互和发布来自细胞、组织和器官的 3D 成像数据,以及这些细胞、组织和器官随着时间的推移出现的行为变化,从而更深入地了解和研究细胞的相互作用。该软件是一款通用的解决方案。通过它提供的各种重要功能,用户可以查看、分析和验证使用各种共聚焦显微镜以及宽视野和高内涵筛选系统采集的 3D 荧光图像,而且该软件是完全集成的,您将感受到无缝的用户体验。
“PerkinElmer 致力于支持Z终将在诸如癌症和神经退行性疾病等疾病研究领域产生新疗法的各种新研究。”PerkinElmer 生物研发业务成像和检测解决方案副总裁 Achim von Leoprechting 说。“凭借新应用和增强的成像功能,新款 Volocity 6.0 软件将帮助科学家更好地理解疾病如何影响细胞以及潜在疗法如何影响疾病细胞和健康细胞。”
除了简单的细胞之外,Volocity 软件还可以根据生物学分类(如细胞核、细胞膜、细胞器和蛋白质)组织和关联测量,从而更加简单快速地执行分析和理解结果。此外,全新的界面能够使各种技术水平的用户执行复杂而富有挑战性的生物测量,将 3D 分析功能的应用范围扩展到更加广泛的潜在用户群体。
利用 Volocity 6.0 套件重要的新功能,用户可以:
受益于更多的交互和更简单的工作流,更便捷地获得定量 3D 答案。 更加简便地定义和测量细胞、细胞器或者其他生物结构及其之间的关系。 以 3D 形式测量横跨整个区域或者在生物相关部分(如细胞或细胞核)中结构间的距离。 对未在 Volocity 软件中采集的数据执行 FRAP 分析。 更便捷地导出多个已处理的图像,以在其他应用程序中显示和使用。关于 PerkinElmer, Inc.
PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的lingxian公司。据报道,该公司 2010 年收入约为 17 亿美元,拥有约 6,200 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请通过1-877-PKI-NYSE, 或访问 http://www.perkinelmer.com.cn/?tum_source=instrumentDotComNews&utm_campaign=Volocity6_Bio_2011CN。
Edelman(代表 PerkinElmer, Inc.)
Amanda L. Connolly
直拨电话:+1-404-832-6785
amanda.connolly@edelman.com来源: PerkinElmer, Inc.
新闻由 Acquire Media 提供
- PerkinElmer 发布 Volocity 3D 图像分析软件的免费演示版
马萨诸塞沃尔瑟姆 专注于提高人类健康及其生存环境安全的lingxian公司PerkinElmer, Inc.今天宣布将发布其通用3D 图像分析 Volocity 软件的免费演示版。此款新的共享软件旨在帮助应用激光共聚焦显微技术的研究机构深化细胞生物学的认知。以 3D 形式分析图像可获得更加准确的测量结果和定量数据,从而推动癌细胞和干细胞研究、神经系统疾病和传染病等细胞科学领域获得新的科技突破。
Volocity Demo是原软件一个功能完整的分析版本,它允许研究人员使用自己的显微图像数据,根据自己的时间安排执行研究,不受时间限制地研究和评估 Volocity 的全部分析功能。公司提供讲解该软件主要功能的在线“入门”指南、视频库和文本指导,为软件的应用进行支持。此版可免费下载的软件使研究人员能够测量和分析组织之间、细胞之间或细胞器之间的重要关系,生成定量数据并创建 3D 图像和影片,在获得 Volocity 完整版的许可后还可以将这些图像和影片进行发布。
Volocity 软件平台是一整套高性能的 3D 图像分析产品,用于对细胞进行显示和测量。它是一种可进行荧光显微图像的 3D 分析的通用解决方案,使研究人员能将细胞结构与功能进行关联研究。已经有 1000 多个研究小组使用 PerkinElmer 图像分析软件发布了研究结果。
要获取详细信息和下载 Volocity Demo 的免费SY版。
关于 PerkinElmer, Inc.
PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的lingxian公司。据报道,该公司 2009 年收入约为 18 亿美元,拥有约 8,800 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。
有关其它信息,请致电800-820-5046 或 +86(0)21-398795103208或访问 www.perkinelmer.com.cn。
# # #
联系人:
媒体联系人:
PerkinElmer, Inc.
Kim McCrossen
电话:781-663-5871
- PerkinElmer Volocity 6.0升级版专为生物学研究者优化设计的高级定量分析功能!
PerkinElmer Volocity 6.0 升级版代表了 Volocity Quantitation 在功能与简洁性方面的重要进步。了解详细信息。
Volocity 6.0 便于进一步理解细胞内及细胞间关系:
更加轻而易举地定义和测量细胞、细胞器或其他生物结构及其相互关系。 在全场或者生物学相关区室(如细胞或细胞核等)内,以 3D 方式测量结构之间的距离。 借助更丰富的交互功能和更简单的工作流程,更加轻松快捷地获取量化 3D 答案。 对不是在 Volocity 软件中获得的数据执行 FRAP 分析(需要 FRAP 插件和 Volocity Quantitation)。 更快速、更简单地导出多种经过处理的图像,以供演示或其他应用之需。了解 Volocity 软件新功能的更多信息,包括有关现有 Volocity 软件用户如何充分利用改进功能的诀窍。
PerkinElmer Volocity 促进了胰岛生物学研究的进步!
PerkinElmer 活体荧光成像:全新生物相容性分析技术!
- PerkinElmer Volocity 促进了胰岛生物学研究的进步!
了解更多有关该团队研究的信息
迈阿密糖尿病研究所的科学家们对郎格罕氏岛的生理学和免疫生物学作用抱有浓厚兴趣。了解研究人员如何使用 Volocity,对免疫细胞在胰岛同种异体移植排斥反应期间的运动动力学进行 3D 具象化和量化。Volocity 能够修正图像采集后在 x、y 和 z 方向上的偏移,这也是他们不可或缺的成功助力。
“在众多软件程序包中我们决定选择 Volocity,因为 Volocity 可以提供zhuo越的 3D 虚拟化功能,同时也包含了易于使用的处理和分析工具。”
(迈阿密糖尿病研究所 Midhat Abdulreda 博士) )
- PerkinElmer 推出创新的多重检测系统
AlphaPlex? 试剂技术能用更短的时间为生命科学研究人员
提供更多的数据
专注于提高人类健康及其生存环境安全的lingxian公司 PerkinElmer Inc. 今天宣布推出 AlphaPlex? 试剂技术。AlphaPlex 技术是一种能进行超高灵敏度免疫分析的均相、“一孔全部完成”的多重检测试剂系统,能在尽量减少人为干预的情况下,用更短的时间为研究专家提供更多的数据。
AlphaPlex 试剂能同时对单孔中的多种分析物进行定量,从每次分析中获取更多信息。AlphaPlex 试剂采用了 PerkinElmer 的 AlphaLISA? 技术来定量单孔中的多种分析物。
PerkinElmer 生命科学与技术部总裁 Brian Kim 表示:“PerkinElmer 致力于向研究人员提供精湛的技术、详细的分析信息以及深入的样品认知,帮助他们在更短的时间内、以较少样品实现更jing准的分析。AlphaPlex 技术可将整体分析时间从一至两天减少到Z低两个小时。这些改进能推动技术的发展,促进新发现的产生,实现疾病诊断和ZL方法的进步。”
AlphaPlex 试剂是一种基于 PerkinElmer 成熟的 Alpha 技术(该技术是酶联免疫吸附检测方法 (ELISA) 的替代技术)的化学发光荧光亲近性检测技术,能对单孔中的多种分析物进行定量。当供体微珠和受体微珠距离接近时,会引发一系列化学反应,发出剧烈增强的信号。使用不同受体微珠能发出不同的波长,从而检测到多种分析物。
研究人员可以使用 AlphaPlex 试剂对大量不同分析物进行定量,从核苷酸到大蛋白,以及具有不同免疫分型的细胞群,如无限增殖细胞、原代细胞和干细胞。AlphaPlex 试剂可用于比率信号测量,实现更高的重现性并降低假阳性率,这点在高通量筛选中非常重要。
新型 AlphaPlex 技术可以用于含有 Alpha 技术同时基于滤光片的微孔板检测仪,例如 PerkinElmer 的 EnVision? 多标记微孔板检测仪,该检测仪还可通过采用 JANUS? 自动化工作站实现自动化运行。想了解有关 AlphaPlex 技术的更多信息,请访问 www.perkinelmer.com/AlphaPlex
- 新方案,芯质量 | PerkinElmer推出半导体行业检测方案
芯片,在我们的生活中无处不在,它存在于手机、电脑以及其他数字电器中成为我们现代社会的重要构成之一。
从晶圆到芯片,要经历清洗、氧化、光刻、显影、 刻蚀、扩散、离子注入、CVD、CMP、金属化等多道基本工序,重复多次才能完成。加工过程中晶圆的杂质含量、电子化学品和电子特种气体的纯度、超净间空气中的污染、材料热性能、胶水及基板的固化程度等就将直接影响到成品良率。
芯片加工工艺流程
珀金埃尔默Z新推出的《半导体行业检测方案》,为您提供从上游试剂、原材料到工艺过程、封测的各个环节的检测方案,助您严格把控生产的每一步、产出更高品质的产品。
无机元素与纳米颗粒分析技术
晶圆表面金属杂质自动分析(VPD-ICP-MS)
晶圆中的金属杂质分析(UCT-ICP-MS)
半导体级高纯酸杂质检测
电子特气直接进样分析技术(GDI-ICP-MS)
半导体有机试剂中纳米颗粒分析(Single particle-ICP-MS)
On-line ICP-OES 在线监控磷酸中的硅含量
洁净室有机污染物分析技术
在线与离线的GC-MS监控洁净室有机污染物的分析技术
半导体材料组分检测技术
红外光谱仪测试电路板胶水固化率
红外显微镜测试电路板污染物
热机械分析仪测试热膨胀系数
差示扫描量热法测量基板固化程度
热重分析仪测试基板成分浓度
即刻扫码获取《半导体行业检测方案》
关于珀金埃尔默:
珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。
了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
- PerkinElmer 率先推出符合 GMP 要求的镥177 核素
2010年5月20日
放射化学试剂领域的ling导者扩展放射性同位素产品,推动多种疾病的相关研究
马萨诸塞沃尔瑟姆 专注于提高人类健康及其生存环境安全的lingxian公司PerkinElmer, Inc.,今天宣布推出全新的符合 GMP* 要求的放射化学试剂解决方案 - 镥 177 核素**这种新化合物可用于研究 30 多项不同临床应用,包括结肠癌、转移性骨癌、非何杰金淋巴瘤和肺癌的ZL靶位。
生产符合 GMP 要求的镥 177 可以为世界各地的核药物ZX和制药公司提供支持,帮助他们采取有效措施开发出全新的放射性药物解决方案,从而创造出适于靶向癌症疗法的潜在“智能药物”。
Z近,PerkinElmer 和密苏里大学原子能研究所 (MURR) 签署了一项合作协议,旨在对原有放射化学级的镥 177 生产进行升级,使其符合 2001 年 8 月颁布的 ICH Q7A(原料药的优良制造规范指南)。
镥 177 的功能和优点
- 低能 gamma 射线可用于研究诊断成像和放射ZL的效果
- 组织穿透路径长度短,适用于删除较小肿瘤的靶向疗法研究
- 相对较长的半衰期,可达 6.71 天
- 纯度和放射化学浓度高,可优化标记效率
- 支持定制配比,增加了灵活性和便捷性
NEN 放射化学试剂 50 多年来一直是优质、可靠以及科学创新和生产创新的代名词。这款新产品续写了 PerkinElmer 作为放射性核素、配体和生化制剂ding级供应商的光荣传统。公司将通过配送网络、种类齐全的产品和的技术支持,不断追求zhuo越的客户满意度。
** 符合 2001 年 8 月颁布的 ICH Q7A(原料药的优良制造规范指南)的相关规定。
** 仅用于研究和考察用途。
关于 PerkinElmer, Inc.
PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的lingxian公司。据报道,该公司 2009 年收入为 18 亿美元,拥有约 8,800 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。
有关其它信息,请访问www.perkinelmer.com.cn 或 请致电 800-820-5046 或+86(0)21-38769510。
- 微透镜的大视野3D成像
微透镜
(a) 为微透镜的大视野3D图像,通过hitachi MAP 3D 将多张3D 图像拼接而成。
(b) 为(a)中红框部分的形貌像。通过颜色标尺很容易确定高度信息。
(c)(d)是提取的图.1(b)中划线区域的结果,可以获得每个透镜(箭头 0-1, 2-3)的水平距离、垂直高度以及顶部和底部的角度。
所以,使用Hitachi Map 3D可以获得大视野3D图像和截面轮廓信息。
(a)拼接后的3D图像(x2k), (b)红框内的形貌图
(c)(b)中划线区域的截面
观察机型:FlexSEM1000
观察条件:5 kV, 2000倍, 30Pa 软件:Hitachi Map 3D
Material
【大视野3D观察】
FlexSEM1000
- 活细胞成像简介
了解复杂且快速变化的细胞动力学是深入探索生物进程的重要一步。因此,现代生命科学研究越来越需要关注于在分子水平上实时发生的生理事件。
观察和分析活细胞时面临的挑战
在固定细胞或组织中,获取样品“分子状态”的信息已是一项艰巨的任务。如果需要获取实时信息,,就必须尽可能在实验过程中保证细胞自然地运行生理机制,因此将加大实验的困难程度。此外,由于很多生理过程的持续时间仅有几秒甚至几毫秒(例如细胞内离子水平的变化),必须在相对较短的时间内采集大量信息。
满足这些挑战性需求的一种方法是采用被统称为活细胞成像的光学技术。活细胞成像可研究活细胞中的实时动态生理过程,而非提供细胞当前状态的一幅“快照”。它把快照转变成了电影。活细胞成像可提供单个细胞、细胞内网络(原位)甚至整个生物体(体内)中动态发生分子事件的空间和时间信息。这些特性让活细胞成像成为了研究细胞生物学、癌症、发育生物学和神经科学中动态生理过程的必要技术。
近年来,电子学、光学和生物化学的迅速发展,使得科学家们更轻松的实现活细胞成像。如今的活细胞成像方法使用优化的显微镜、专用光源、高速相机、高灵敏度探测器和特异性的荧光标记物,可同时提供技术成熟且仍具有创新性的全套解决方案,满足在分子水平上对单细胞或整个细胞网络进行实时研究的挑战性需求。
使用线粒体标记物(MitoRed®)和荧光钙染料(Fluo-4)对细胞进行活细胞成像
图1:荧光钙染料Fluo-4标记的睾丸支持细胞的原代培养。钙染料的位置类似于表征细胞内的钙分布。
图2:线粒体标记物MitoRed®染色的睾丸支持细胞的原代培养。
图3:图1和图2的叠加。观察钙斑和线粒体的共定位情况。
图4:睾丸支持细胞的DIC图像。
使用共聚焦显微镜Leica TCS SP5(DMI6000 CFS)和Leica LAS AF7000成像软件获取的图像。由德国亚琛工业大学生物II研究所化学感知系Sophie Veitinger博士提供。(地址:德国马尔堡菲利普斯大学细胞生物学和细胞病理学研究所)
对应刊物(非图片来源):
活细胞成像中的常见问题
活细胞成像通常适用于培养的细胞系(例如HEK细胞、HeLa细胞)、原代细胞(例如皮肤细胞、神经细胞)、急性制备的组织切片(例如脑切片)或整个器官或生物体。因为细胞被带出其原本“自然”的培养环境并会受到光毒性的影响,所以在实验过程中的首要任务是保持细胞的健康状态。
细胞外溶液
不同类型的人工细胞外溶液(林格氏液、人工脑脊液(ACSF))和培养基(例如Leibovitz L-15)用于为细胞提供维持其生理功能所必需离子和其他辅助因子。用于活细胞成像的培养基成分包括从极简单的“含盐”溶液(例如林格氏液)到非常复杂的混合物(例如Leibovitz L-15),种类繁多。
但所有溶液都有一个共同点,即都包含pH缓冲液,因为暴露在环境中之后,会显著改变培养的pH(通常pH 7.2.-7.4)。在很多细胞外溶液中,pH缓冲液通过添加10–20 mM两性离子有机化学品HEPES(2-[4-(2-羟乙基)哌嗪-1-基]乙磺酸)来实现。但对于很多细胞来说,细胞外溶液不能用HEPES或其他化学缓冲液(例如MOPS、TES),因为培养基中缺乏pH缓冲碳酸氢盐会对细胞造成伤害。要解决该问题,必须将二氧化碳输送到细胞外溶液中(二氧化碳与细胞外溶液接触时,会转化为碳酸氢盐)。这可以通过两种方式实现:一种是不断输送气态二氧化碳(通常以碳化物的形式:95%的氧气和5%的二氧化碳)到细胞外溶液中,并不断对细胞进行换液。这种方法通常用于代谢周转率高于细胞增殖的切片制备。
另一种常见的方法是将细胞保存在可调节培养环境气体浓度和温度(在很多情况下)的培养室中。在此类培养物中持续供应5-7%的二氧化碳气体,并且可以严格控制温度。必须根据使用的样品类型和实验的持续时间,来确定化学缓冲的细胞外溶液是否足以使细胞保持良好状态,或者是否需要输送二氧化碳甚至使用培养小室。在很多情况下,化学缓冲溶液即可满足细胞培养和短时实验的要求。,因为急性切片代谢周转率要高得多,通常需要足够的二氧化碳供应。但对于很多细胞类型和长时间成像实验,必须使用培养小室。
光毒性
使用荧光染料进行活细胞成像的另一个问题是:激光或高强度电弧放电灯的入射光会损害细胞,即所谓的光毒性。光毒性主要在合成荧光染料被激发时发生。荧光染料被激发后,它们将与分子氧发生反应并产生自由基。为避免光毒性,必须选择尽可能低的光强度和尽可能短的激发持续时间,以将入射高能光剂量保持在尽可能低的水平。在实验设计过程中,还必须考虑实验的持续时间。长时间实验中,通常不需要高帧速率。因此,图像采集的周期频率通常可以从例如每秒10多帧降低到每秒1帧甚至更低。这将显著降低样品上的入射光剂量,从而大幅降低光毒性。
对于低强度荧光信号成像,可以考虑更改图像采集条件设置,比如在大多数情况下,通过将相机功能用作像素合并或提高增益,甚至使用特殊的高灵敏度相机(例如EM-CCD相机)进行成像。这样可以在不增加激发持续时间或光强度的情况下实现更好的信噪比和信号质量,而这两者都会导致更高的光毒性。此外,选择具有长激发波长的荧光基团也可降低光毒性,因为与具有短激发波长的荧光基团相比,传递给样品的能量更低。荧光蛋白(例如绿色荧光蛋白(GFP))的光敏位点位于被多肽包膜覆盖的蛋白质内部,因此通常没有光毒性。
焦面漂移
此外,在长时间的活细胞成像实验中,很可能发生焦面漂移的问题,,。可以使用配备有软件或硬件控制自动对焦的成像仪器来避免这种情况。
图5:接种了豇豆花叶病毒(CPMV)的豇豆初生叶(Vigna unguiculata "California Blackeye"),在病毒RNA 2中的运动蛋白(MP)和衣壳蛋白(CP)之间的插入GFP基因。GFP以游离蛋白的形式大量表达(因此未融合于MP或CP),并且可以定位在受感染的表皮和叶肉细胞的细胞质和细胞核中。由荷兰瓦赫宁根农业大学,生物分子科学部门分子生物学实验室的Joan Wellink博士及植物科学部门病毒学实验室的Jan van Lent博士提供。
视频1:用DIOC6染色的活洋葱球细胞,同时进行透射光检测;使用共聚焦显微镜Leica TCS SP2 AOBS RS拍摄,63倍物镜,1.5倍变焦,2倍线平均,扫描分辨率512 x 265,速度每秒4.7帧。
视频2:用表达GFP融合蛋白的构建体瞬时转染的COS细胞。细胞溶质蛋白在细胞中呈针状分布。3D堆栈(10.14 µm,14层切)每5秒记录一次,,持续10分钟。本视频使用了堆栈的最大投影。512 x 512像素,双向扫描,变焦2倍,物镜HCX APO L U-V-I 63.0 x 0.90 W UV。由法国伊尔基希细胞生物学研究所成像中心Jocelyn Laporte,提供。
用于活细胞成像的方法
可应用于活细胞成像的宽场和共聚焦显微技术的范围也非常广泛。通常,使用复式显微镜和反差对比方法(例如相差和微分干涉相差(DIC)),随时间观察细胞的生长、聚集或运动过程。此外,通常使用体视显微镜或宏观镜对大型标本(例如发育中的斑马鱼胚胎)进行延时成像。在过去数十年中,先进荧光技术变得越来越重要。共聚焦显微镜应用的迅速增加,使生物研究的视角从平面向三维立体转变。
阅读有关活细胞成像技术的更多信息
活细胞成像技术——观察生命的分子水平动态
相关链接:细胞生物学、 细胞培养、活细胞成像、类器官和3D细胞培养了解更多:https://www.leica-microsystems.com.cn/cn/?nlc=20201230-SFDC-011237
- 原位细胞3D切割成像技术基于青鳉胚胎组织的单细胞提取
- 单细胞的原位组织提取一直以来都是一项十分困难的工作,这主要受制于组织之间连接致密难以消化,而机械力往往很难精确地将单个细胞与组织完整的分离。激光切割具有传统切割技术所难以匹及的切割精度,是目前一种比较理想的切割手段,因此围绕激光切割技术的相关显微产品也孕育而生,并在科研领域中越来越受到关注。但是激光切割也有其局限性,首先显微激光切割往往要从表面开始,无法对深层组织进行切割;另一方面激光的光源往往采用紫外激光光源,这种类型的光源很容易造成组织灼伤,从而影响切割下来样品的品质,因此激光切割的应用发展也受到了诸多限制。
如今ROWIAK公司推出的一款全新的单细胞分离系统有望解决这一难题。它采用了近红外双光子激光切割技术,在保留了激光切割精度优势的同时,采用近红外波长的激光从而避免了激光切中对组织灼烧的问题。因此能够实现jing准的原位组织中的单个细胞的分离。双光子3D组织切割成像系统TissueSurgeon发育中的青鳉胚胎青鳉是一种成熟的模式生物,常用于分析发育和发育过程中的细胞信号神经生物学研究。其中使用表达荧光蛋白的转基因胚胎是一种揭示胚胎发育的良好方法。随着基因技术的发展,研究者们越来越多地开始关注这些标记细胞中转录组中的信息。虽然单细胞测序技术发展迅速,但是从组织中获得单细胞的手段却十分有限。目前几乎没有手段能够直接在组织的原位上快速获取一个细胞,但是基于ROWIAK双光子切割技术,研究者成功地在这方面取得了一些进展。青鳉胚胎中感知神经中表达mcherry的细胞成像研究者为了研究青鳉感觉神经分泌细胞细胞群中特定表达m-cherry的转基因细胞的内部遗传信息,将ROWIAK双光子3D组织切割成像系统与传统的显微操作系统进行结合,成功实现了对目标细胞的原位分离。研究者首先利用双光子3D组织切割成像系统对青鳉胚胎中的mcherry细胞进行了定位,然后根据其细胞群的形态设定了切割部位,随后系统根据预先设定的范围进行切割。待切割完成后使用玻璃微管移液器将目标的细胞部位直接取出,即获得了目标组织区域。这种方法能够在不破坏样品原位信息的情况下将感兴趣的部位直接jing准的分离,这对于揭示生物体的基因表达情况具有着深远的意义。从青鳉胚胎中分离特定表达mcherry的细胞团参考文献:
Wittbrodt, J. et al. Medaka — a model organism from the Far East. Nature Reviews Genetics 3, 53-64.
Yamamoto, T. (ed.) MEDAKA (Killifish): Biology and strains. Yamamoto, T. (ed.) Keigaku Pub. Co., Tokyo, 1975, pp.365.
Kristin Tessmar-Raible et al.Removal of fluorescently-labeled sensory-neurosecretory cells from forebrain of transgenic Medaka embryos, focusonmicroscop. 2011.
- ibidi活细胞成像|为什么要用活细胞成像来研究细胞的5大理由!
细胞生物学是生命科学的一门学科。顾名思义,它致力于研究生物。单凭这一事实就足以成为研究细胞自然生存状态的理由。当然,活细胞成像还有其他深层次的原因。在本篇文章中,我们列举了用延时显微镜研究活细胞是有意义的五大很好的理由。
背景
活细胞成像允许在一定时间内在显微镜下对细胞进行体内观察。各种显微镜技术适用于活细胞成像:例如,可以采用无标记的技术,如相差,DIC,或干涉测量法,也可以依靠荧光显微镜,利用荧光标记标记和可视化细胞亚结构、分子或蛋白质。当然,活细胞成像也面临挑战,在建立活细胞图像实验时需要考虑某些要求。最重要的是,必须确保显微镜配备了一个stage top 培养箱,能够提供理想的环境,使细胞在一段时间内保持存活和健康。
图1.A:活细胞成像过程中需要考虑和控制的环境参数
图1.B:倒置显微镜的台顶培养箱示意图
参数和环境条件是此类实验的重要部分,我们将在以后的公众号中讨论。如果您有兴趣,可以在本篇文章中查看更多相关内容。在此我们已经介绍了基本知识,接下来我们将继续深入探讨为什么您应该使用活细胞成像来研究您的细胞:
1.避免固定过程中的人工制品
细胞通常在显微镜观察前固定(如免疫荧光),以保存在逼真的状态。多年来,许多不同的化学和物理程序已被优化和建立,以保持原始样品的质量。然而,固定过程会对细胞造成损害(当然在这个过程之后,它们会死亡),并不可逆转地改变其组织、结构和形态(细胞器收缩、蛋白质定位错误等)。然而,活细胞成像可以让我们研究活细胞。这意味着他们应该展示他们的自然形态,这仍然会受到荧光标签、激光等的影响,但这就像环境条件一样,是一个不同的状况。
2.观察和分析动态过程
活细胞成像使我们能够观察整个细胞群、单个细胞甚至亚细胞水平的动态事件。当固定细胞将其锁定在特定时间点的特定(行为或结构)状态时,对活细胞的显微镜观察可以洞察整个动态过程。基于功能性细胞的检测,如损伤和迁移(图2)或趋化实验是活细胞成像应用的很好的例子。这些分析使得研究细胞对化学(趋化性)或机械(伤口愈合)刺激的反应成为可能。
图2:使用ibidi Stage Top孵育系统的活细胞成像显示了伤口愈合和迁移试验中MCF7细胞的间隙闭合。相差;10倍物镜。
3.实时跟踪细胞变化
活细胞显微镜是实时了解细胞随时空变化的一种有价值的方法,而不是依赖于固定细胞的端点的分析结果。通过使用延时视频显微镜对细胞进行更长时间的跟踪,可以捕捉到结构重排的动态(如图3,感受趋化刺激后细胞骨架的极化), 或使用固定细胞可能会错过的瞬时细胞性活动(如,有丝分裂期间的染色体分离)。
图3:应用趋化梯度后,表达LifeAct的原代树突状小鼠细胞中肌动蛋白动力学的活细胞成像
4. 研究单分子动力学、定位和相互作用
先进荧光标记和成像技术的发展,如光脱色荧光恢复技术(FRAP)、荧光寿命成像显微技术(FLIM)和荧光共振能量转移技术(FRET),使活细胞成像过程中单分子定位、动力学和相互作用的观察和分析成为可能。
FRAP可以测量活细胞内荧光标记分子和蛋白质的迁移率。FLIM通过测量附着的荧光团的寿命来提供有关细胞分子分布及其环境的信息。
利用FRET,人们可以通过检测两个分子在纳米级相互接近时所附荧光团的相互作用来测量活细胞中两个分子的直接相互作用。
5. 从单个实验中获取更多信息
总的来说,如果您进行活细胞成像,您可以从单个实验中获得比从固定细胞成像更多的信息。这是因为活细胞成像使人们能够跟踪分子动力学和动力学,并提供了您感兴趣的一个更大、更全面的细胞过程图像。
对固定样本的分析通常只提供某个细胞性活动的快照,而跟踪整个动态过程使人们能够从单个实验中测量更多参数,并得出更多不同的结论。
如您有兴趣了解更多关于活细胞成像的知识,请关注我们公众号活细胞成像应用相关内容。也可以向我们索要相关资料。
活细胞成像应用相关内容:
- 超分辨高精度显微镜3D成像模块
超分辨高精度显微镜3D成像模块
光学显微镜凭借其非接触、无损伤等优点,成为生物学家研究细胞功能结构、蛋白网络结构、DNA等遗传物质、细胞器以及膜结构等应用必不可少的工具,然而衍射极限的存在,使得人们无法清晰地观察到横向尺寸小于200nm、轴向尺寸小于500nm的细胞结构。二十一世纪初期,具有纳米尺度分辨率的超分辨光学显微成像技术的出现,使得研究人员可以在更高的分辨率水平进行生物研究。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得;对透镜制造技术提出了一定要求的同时,也限制了观测的视野;日益复杂的设备使得操作和维护也越来越困难等。
为解决上述问题,美国Double Helix Optics公司提出了纳米级分辨率成像的新概念-“SPINDLE”,不仅突破了衍射极限,还可以实现三维成像,可捕捉到小至横向尺寸10 nm、轴向尺寸15 nm的细节。在该技术中,SPINDLE模块被安装在显微镜和ccd或相机之间,无需改变现有成像系统设置。基于特殊设计的相位掩模版,从工程化点扩散函数 (E-PSF)出发,使用螺旋相位掩模板来控制景深、发射波长和精度,结合3DTRAX软件对3D图像进行重建和分析,可在不需要扫描的条件下即时捕获 3D 信息,得到无与伦比的深度和精度3D图像,横向精度可达20nm, 轴向精度可达25nm,成像深度可达20um。当与其他工具和技术,包括STORM、PALM、SOFI、光片显微、宽场、宽场显微、TIRF、FRET等一起使用时,可释放巨大的潜力,适用于活细胞、固定细胞和全细胞成像、单分子、粒子跟踪和粒子计数等应用。
图1:SPINDLE2双通道显微镜模块,用于同时多色、多深度3D成像
SPINDLE2可以被很容易地安装到现有显微镜和CCD或相机之间,内置旁路模式可轻松返回到非3D光路,是实现单发超分辨和3D宽场成像的理想解决方案。
图2:非洲绿猴肾细胞的3D 图像,微管和肌动蛋白分别标记,两种颜色同时成像
在SPINDLE模块中,最核心的是经过特殊设计的相位掩模板,其尺寸和设计需和光学系统和成像条件相匹配。这些相位掩模板将单一物体发出的光分裂成两个独立的旋转的光瓣,类似于双螺旋。两瓣的中点对应物体发光源的横向位置,两瓣的夹角对应发光源的轴向位置。由于旋转180°时光斑可以保持聚焦,因此可以高精度地获取发光“点”的深度信息。收集的数据由许多这些在不同方向上与物体横向和轴向位置相对应的分离良好的点组成。经过对这些详细的目标点数据集处理和图像重建创建,即可得到超高分辨率原始物体清晰的三维结构。
图3:工程化相位掩模板通过每帧成像更大的体积来节省时间和存储空间,并降低感光度
丰富多样的相位掩模板库,包括双螺旋,单螺旋,EDOF,四足,和多色设计以提供大的控制和灵活性。用户可依据深度范围、波长和其他光学参数选择合适的相位掩模版以满足的深度-精度平衡。
3DTRAX® 软件用于计算每个粒子的z位置,运行专有算法以自动进行3D定位,以‹20 nm的深度和分辨率渲染高精度3D图像,用于单分子定位和跟踪。对漂移进行自动校正并生成直观的绘图,同时保持高数据质量。
图4:3DTRAX®是非常易于使用的斐济插件
使用适用于 Windows、MacOS 和 Linux 的库集成到您的工作流程或 OEM 仪器中,以 ThunderSTORM 或双螺旋文件格式保存图像并导出文件以供进一步分析,专有的反卷积算法可以在不损失精度的情况下重建全细胞图像。
图5:从左到右:非洲绿猴肾细胞的细胞骨架,小鼠胚胎成纤维细胞中的微管,小鼠胚胎成纤维细胞细胞核中的复制DNA的3D超分辨图像
超分辨显微镜3D成像模块应用
超分辨显微成像和3D粒子跟踪技术为生物学和生物医学研究、药物发现、材料科学研究和工业检测打开了一个充满可能性的新世界。双螺旋工程技术具有高达传统显微镜30倍的成像深度,其为超分辨成像带来了精度-深度平衡。在3D粒子追踪应用中,双螺旋工程带来的扩展的深度可以实现更长粒子轨迹的捕获。
在生命科学领域,双螺旋光工程正在从癌症和免疫学到传染病和神经科学的生命科学的突破。研究人员通过使用SPINDLE模块发现了新的细胞结构和亚细胞的相互作用。研究神经退行性疾病的科学家们能够看到以前从未见过的压力颗粒核3D图像。同样,研究免疫学的研究人员已经能够重建整个T细胞。
在药物开发领域,研究人员已经可以看到和跟踪药物化合物的真正工作原理,而不是简单地模拟新的化合物。双螺旋光工程实现了在成像和单粒子跟踪(SPT)领域的新突破,随着追踪分子的能力跨越更大的景深(高达20um),双螺旋可以记录比以往任何时候更长的轨迹,使得识别先导化合物和加快药物发现变得更加容易。
在材料科学领域,借助3D纳米成像和粒子跟踪技术,无论是金属、半导体、陶瓷、聚合物还是纳米材料研究,双螺旋技术都可以让您看到材料的结构、流动性等性能。精密成像与深度扩展相结合,让你对粒子动力学有了新的认识。有了更多的数据,就可以更好地预测材料在任何给定应用领域中的性能。
在工业检测领域,双螺旋工程可实现纳米尺度的三维检查。现在你可以在从微芯片到像素级的产品中发现微小的缺陷和其他功能缺陷。纳米级精度的检测,可以提高质量控制,节省时间,降低成本,提高产量和跟踪质量。
引文:[1]金录嘉, 何洋, 瞿璐茜,等. 新型超分辨显微技术的研究进展[J]. 光电产品与资讯, 2018, 9(3).
如您对SPINDLE感兴趣,请随时与我们联系!
关于昊量光电:
昊量光电 您的光电超市!
上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。其代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。
我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
相关文献:
(1)Anastasiia Misiura, et. al., “Single-Molecule Dynamics Reflect IgG Conformational Changes Associated with Ion-Exchange Chromatography,” Analytical Chem., 2021
(2)Laura Hoppe Alvarez, et. al., “Controlling microgel deformation via deposition method and surface functionalization of solid supports,”
Phys. Chem. Chem. Phys., 2021,23, 4927-4934
(3)Xilin Yang, et. al., “Deep-Learning-Based Virtual Refocusing of Images Using an Engineered Point-Spread Function,” ACS Photonics, 8, 7, 2174–2182, June 2021
(4)Anish R. Roy, et. al., “Exploring cell surface-nanopillar interactions with 3D super-resolution microscopy,” BioRxiv, June 2021S. Li, J. Wu, H. Li, D. Lin, B. Yu, and J. Qu, “Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection,” Optics Express, vol. 26, no. 18, p. 23585, 2018.
您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。
- 3D组织成像:快速预览到高分辨率成像的一键切换
全场景显微成像分析平台MICA集3D采集和AI定量于一体。
3D组织成像广泛应用于生命科学领域。研究人员利用它来揭示组织组成和完整性的详细信息,或从实验操作中得出结论,或比较健康与不健康的样本。本文介绍了MICA如何帮助研究人员进行3D组织成像。
3D组织成像
模式生物或患者的组织切片可用于分析从组织到细胞的各种形态,进而发现健康和非健康样本以及对照样品和实验样品之间的差异。例如,是否存在特定细胞或它们的形态(即形状、体积、长度、面积)都是有意义的参数。
荧光显微镜有助于识别特定标记的细胞或细胞组分。因此,要么用转荧光标记基因生物,要么用免疫荧光染色。此外,某些基因和转录也可以通过荧光原位杂交 (Fluorescence in Situ Hybridization, FISH) 进行可视化。
3D组织成像的一个示例是,对脑部神经元进行成像,以确定它们的长度、体积或与其它细胞的连接。例如,可以对患有局部脑缺血的模式生物制作脑部切片,以了解形态差异和细胞数量。
挑 战
首要的挑战之一是使用显微镜初步观察样本。需要将样本置于载物台上并不断调整三维位置以确保对样本进行正确成像。你从目镜或屏幕上看到的只是样本极小的一部分。因此,要将样本保持在正确的焦距内并找到正确位置,以便找到感兴趣的区域,是一个非常麻烦的过程。MICA的样本查找功能通过将样本聚焦并生成每个相关区域的低倍率预览图来自动化这个过程,这个功能可以用于整个成像过程的定位。
下一个挑战是设置成像参数,因此可以在看到感兴趣的信号下,避免样本遭受不必要的光漂白。这一步骤通常要同时选择激发和接受检测的技术参数,因为每一项参数都会对样本和获得的结果产生不同的影响。使用MICA,您只需轻轻点击一下“Live”,便可自动完成可视化荧光所需的所有参数设置。可随时通过点击“OneTouch”执行这一自动化设置来优化当前视图的参数。更改显微镜的特定技术参数前,实验人员通常需要了解更改参数将产生的影响,但在MICA中,设置是输出驱动型的,也就是说,可定义所需的输出,然后自动完成对应的调整。
一般而言,第 一步是确定要成像的正确位置。实验人员需要使用目镜了解样本的整体概况,并记住不同的位置。数字显微镜可以生成样本的概览,这可以提供一些帮助,但实验人员仍然需要指出图像中要进一步成像的位置。MICA的Navigator工具可简化这一过程。用户可以生成低倍或高倍的预览,轻松定位感兴趣的区域,并可以使用工具直接在图像上标记出感兴趣的样本区域。这样后续高分辨率图片就可以保存下来。
高放大倍数物镜通常需要使用浸没式介质,最 常见的是水和油。水为水溶液中的成像样品匹配了最 佳的光学指数,而油为包埋的成像样品匹配了最 佳的光学指数。水浸物镜也可用于固定式样本,但会稍微影响成像质量。MICA可同时满足两种需求。水镜还具有全自动化操作的额外优势,水的浸入可以自动建立并维持。为进一步提高光学质量,一些物镜会通过校正环来补偿样本板的厚度。校正环可手动、也可自动操作。MICA配置了自动校正环功能,可实现自动优化。
相对厚度是组织切片成像的另一大挑战。厚切片会形成较多的散射光,干扰所需信号。THUNDER可减少背景模糊,为组织成像提供了一种宝贵的计算成像方法。 MICA集THUNDER于一体,可在合理的时间范围内确定感兴趣的区域。
除了类似于THUNDER的计算清除方法,共聚焦激光扫描显微术(CLSM)等光学部分也是3D组织玻片成像的一种方法。这种方法中,可获得性和可用性方面也是挑战。
除了技术设置比较复杂,共聚焦显微镜所需的培训时间一般也更长。MICA集共聚焦和宽场成像于一体,最 大程度减少了成像参数设置,缩短了所需的培训时间,同时也降低了操作显微镜的技能要求。
另外,共聚焦和宽场成像模式的图像设置有相同的外观和使用感受,因此,用户无需学习两种系统的操作方法。而且,用户可随意在宽场和共聚焦两种模式间切换而无需在两种成像系统间转移样本。
科学实验的一个关键方面是,改变尽可能少的变量,以确定对样本和结果的任何影响。除了保证样本处理相同外,另一个方面是针对激发和接收检测成像参数相同。MICA默认在不同项目中保持成像参数不变,用户仅基于自己的需求进行调整。可根据参考图像轻松恢复成像参数。
方法
三个厚度为250µm的小鼠脑部切片包含下述荧光标记物:
细胞核(DAPI,品红色)
神经元(细胞质GFP,青色)
星形胶质细胞(GFAP-DsRed,红色)
将切片固定于载玻片支架中(图1)并置于载物台上进行成像。
图1:用于玻片成像的MICA玻片夹,例如组织切片。
在样本定义中输入盖玻片类型和染料等基本信息。利用这一信息,Sample Finder可以识别盖玻片并自动生成低倍的预览。对整个盖玻片的预览可以用来识别三个组织切片,然后用Navigator工具进行标记。随后无需手动调整成像参数,便可以在20倍宽场模式下对标记区域生成扫描拼接图像。在这个放大倍数和分辨率下,就能在组织切片上识别出感兴趣的区域,然后用共聚焦显微镜成像。此时,MICA会在相关区域切换为共聚焦模式,记录高清晰图像,包括三维立体图像。定义三维立体图像时,可以手动或单击鼠标自动设置限制。z Range Finder工具自动确定3D图像扫描开始和结束部分。
成像后,可借助MICA Learn & Results工具测量树突棘。为此,使用pixel classifier在叠层投影下识别棘突。pixel classifier简单易用且功能强大,用户只需使用类似于绘画工具的绘图工具标记对象的示例,在这种情况下为棘突。通过训练模型,更好地再现输入,然后提供图像中其他对象的预览。经过训练后,就可使用模型分析图像。结果
找到载玻片预览上单个脑部切片,然后使用Magic Wand工具进行标记以进行扫描拼接。Magic Wand自动识别组织切片的边界并相应地定义所需的拼接。
图2:MICA在实验开始时进行完整的玻片预览(宽场),便于更轻松地定位。借助该信息的信息,可找到大图扫描拼接的感兴趣区域。可使用Magic Wand工具自动化检测感兴趣区域。
MICA可同时采集最 多四个荧光团,因此相比基于滤光块的序列成像的显微系统,可有效节约用户的时间。在单次扫描拼接中,可找到感兴趣区域,并在共聚焦模式下以更高的放大倍数观察更多的细节。
二维图像需要借助三维数据以获得更详细的信息。为此,z界面中定义了三维立体模式。
在CLSM下进行立体采集后(120µm厚),可在三维观察器中可视化数据,获得脑部样本的更多空间信息。
图3:三维重构CLSM。通过三维采集进一步研究组织切片。利用获得的三维信息,用户可以更好地了解样本的空间状况,例如了解细胞间的连接。
对于定量来说,可根据三维采集信息生成最 大投影来测量样本树突棘的平均面积。pixel classifier识别棘突,分析工具则确定面积。得到的数值可绘制成图,以可视化数据和相关性。图4显示了树突棘面积的直方图。这些结果也可通过箱线图的形式显示,来比较不同的树突棘群落(图4)。
图4:分析。MICA不仅采集图像,还可对它们进行分析。
为此,可使用基于人工智能技术的pixel classifier来识别相关的图像细节。随后,识别出的对象可以被量化并显示在图形中。在本示例中,树突棘的平均面积在最 大投影上测量。
结论
MICA是用于三维组织成像的有效工具:使用pixel classifier功能,用户可以快速了解样本的整体质量,确定进一步的操作。随后,Navigator视图可对组织切片进行更深入的观察。Magic Wand等工具用于快速定义感兴趣的区域,加上4个通道的同时成像,可加快大图扫描拼接的速度。使用新的z界面使三维采集更加简化,pixel classifier能辅助后续分析。
简而言之,MICA集宽场成像和共聚焦成像于一个系统中。它可以帮助用户在一个系统中完成从图像预览到三维细节成像再到分析的整个工作流程。
参考资料:
Efficient Long-term Time-lapse Microscopy, Science Lab (2022) Leica Microsystems.
- 3D组织成像:快速预览到高分辨率成像的一键切换
全场景显微成像分析平台MICA集3D采集和AI定量于一体。
3D组织成像广泛应用于生命科学领域。研究人员利用它来揭示组织组成和完整性的详细信息,或从实验操作中得出结论,或比较健康与不健康的样本。本文介绍了MICA如何帮助研究人员进行3D组织成像。
3D组织成像模式生物或患者的组织切片可用于分析从组织到细胞的各种形态,进而发现健康和非健康样本以及对照样品和实验样品之间的差异。例如,是否存在特定细胞或它们的形态(即形状、体积、长度、面积)都是有意义的参数。
荧光显微镜有助于识别特定标记的细胞或细胞成分。因此,要么用转荧光标记基因生物,要么用免疫荧光染色。此外,某些基因和转录也可以通过荧光原位杂交 (Fluorescence in Situ Hybridization, FISH) 进行可视化。
3D组织成像的一个示例是,对脑部神经元进行成像,以确定它们的长度、体积或与其它细胞的连接。例如,可以对患有局部脑缺血的模式生物制作脑部切片,以了解形态差异和细胞数量。
挑战
首要的挑战之一是使用显微镜初步观察样本。需要将样本置于载物台上并不断调整三维位置以确保对样本进行正确成像。你从目镜或屏幕上看到的只是样本极小的一部分。因此,要将样本保持在正确的焦距内并找到正确位置,以便找到感兴趣的区域,是一个非常麻烦的过程。MICA的样本查找功能通过将样本聚焦并生成每个相关区域的低倍率预览图来自动化这个过程,这个功能可以用于整个成像过程的定位。
下一个挑战是设置成像参数,因此可以在看到感兴趣的信号下,避免样本遭受不必要的光漂白。这一步骤通常要同时选择激发和接受检测的技术参数,因为每一项参数都会对样本和获得的结果产生不同的影响。使用MICA,您只需轻轻点击一下“Live”,便可自动完成可视化荧光所需的所有参数设置。可随时通过点击“OneTouch”执行这一自动化设置来优化当前视图的参数。更改显微镜的特定技术参数前,实验人员通常需要了解更改参数将产生的影响,但在MICA中,设置是输出驱动型的,也就是说,可定义所需的输出,然后自动完成对应的调整。
一般而言,第一步是确定要成像的正确位置。实验人员需要使用目镜了解样本的整体概况,并记住不同的位置。数字显微镜可以生成样本的概览,这可以提供一些帮助,但实验人员仍然需要指出图像中要进一步成像的位置。MICA的Navigator工具可简化这一过程。用户可以生成低倍或高倍的预览,轻松定位感兴趣的区域,并可以使用工具直接在图像上标记出感兴趣的样本区域。这样后续高分辨率图片就可以保存下来。
高放大倍数物镜通常需要使用浸没式介质,最常见的是水和油。水为水溶液中的成像样品匹配了最佳的光学指数,而油为包埋的成像样品匹配了最佳的光学指数。水浸物镜也可用于固定式样本,但会稍微影响成像质量。MICA可同时满足两种需求。水镜还具有全自动化操作的额外优势,水的浸入可以自动建立并维持。为进一步提高光学质量,一些物镜会通过校正环来补偿样本板的厚度。校正环可手动、也可自动操作。MICA配置了自动校正环功能,可实现自动优化。
相对厚度是组织切片成像的另一大挑战。厚切片会形成较多的散射光,干扰所需信号。THUNDER可减少背景模糊,为组织成像提供了一种宝贵的计算成像方法。 MICA集THUNDER于一体,可在合理的时间范围内确定感兴趣的区域,
除了类似于THUNDER的计算清除方法,共聚焦激光扫描显微术(CLSM)等光学部分也是3D组织玻片成像的一种方法。这种方法中,可获得性和可用性方面也是挑战。
除了技术设置比较复杂,共聚焦显微镜所需的培训时间一般也更长。MICA集共聚焦和宽场成像于一体,最大程度减少了成像参数设置,缩短了所需的培训时间,同时也降低了操作显微镜的技能要求。
另外,共聚焦和宽场成像模式的图像设置有相同的外观和使用感受,因此,用户无需学习两种系统的操作方法。而且,用户可随意在宽场和共聚焦两种模式间切换而无需在两种成像系统间转移样本。
科学实验的一个关键方面是,改变尽可能少的变量,以确定对样本和结果的任何影响。除了保证样本处理相同外,另一个方面是针对激发和接收检测成像参数相同。MICA默认在不同项目中保持成像参数不变,用户仅基于自己的需求进行调整。可根据参考图像轻松恢复成像参数。
方法
三个厚度为250µm的小鼠脑部切片包含下述荧光标记物:· 细胞核(DAPI,品红色)
· 神经元(细胞质GFP,青色)
· 星形胶质细胞(GFAP-DsRed,红色)
将切片固定于载玻片支架中(图1)并置于载物台上进行成像。
图2: MICA在实验开始时进行完整的玻片预览(宽场),便于更轻松地定位。
借助该信息的信息,可找到大图扫描拼接的感兴趣区域。可使用Magic Wand工具自动化检测感兴趣区域。
MICA可同时采集最多四个荧光团,因此相比基于滤光块的序列成像的显微系统,可有效节约用户的时间。在单次扫描拼接中,可找到感兴趣区域,并在共聚焦模式下以更高的放大倍数观察更多的细节。
二维图像需要借助三维数据以获得更详细的信息。为此,z界面中定义了三维立体模式。
在CLSM下进行立体采集后(120µm厚),可在三维观察器中可视化数据,获得脑部样本的更多空间信息。
图3:三维重构CLSM。
通过三维采集进一步研究组织切片。利用获得的三维信息,用户可以更好地了解样本的空间状况,例如了解细胞间的连接。
对于定量来说,可根据三维采集信息生成最大投影来测量样本树突棘的平均面积。pixel classifier识别棘突,分析工具则确定面积。得到的数值可绘制成图,以可视化数据和相关性。图4显示了树突棘面积的直方图。这些结果也可通过箱线图的形式显示,来比较不同的树突棘群落(图4)。
图4:分析。
MICA不仅采集图像,还可对它们进行分析。为此,可使用基于人工智能技术的pixel classifier来识别相关的图像细节。随后,识别出的对象可以被量化并显示在图形中。在本示例中,树突棘的平均面积在最大投影上测量。
结论
MICA是用于三维组织成像的有效工具:使用pixel classifier功能,用户可以快速了解样本的整体质量,确定进一步的操作。随后,Navigator视图可对组织切片进行更深入的观察。Magic Wand等工具用于快速定义感兴趣的区域,加上4个通道的同时成像,可加快大图扫描拼接的速度。使用新的z界面使三维采集更加简化,pixel classifier能辅助后续分析。
简而言之,MICA集宽场成像和共聚焦成像于一个系统中。它可以帮助用户在一个系统中完成从图像预览到三维细节成像再到分析的整个工作流程。
- ESSENTIUM推出280i独立双挤出工业3D打印机
Essentium首席执行官Blake Teipel表示:“制造业正朝着AM带来的更精简、更敏捷的未来发展。这是彻底变革的开始,通过新的经济和生产模式可以节省数十亿美元。但是,这种变化需要持续不断的创新,以便能够做以前没有做过的事情,制造以前没有做过的零件,并制造以前没有做过的东西。”
独立的双挤压(FFF)系统有着体积大,生产能力高,并且可与高温材料兼容的特点,专为车间生产而设计。HSE 280i HT适用于航空、电子、汽车和消费品等领域的大批量制造商,以及适用于功能性原型设计和使用高性能工程丝材的大规模生产商。
Essentium HSE 280i HT IDEX 3D 打印机
Essentium高速挤出
Essentium的3D打印机产品组合(现在有2种)包括原始的HSE 180-S系统。180-S提供三种不同版本,还面向寻求大批量生产聚合物和复合材料的制造商。该机器的制造体积为690 x 500 x 600mm,非常适合制作高强度夹具、固定装置到假牙套和矫形器等各种应用。该公司在2019年开始扩大其HSE平台的产量,以响应不断增长的需求,并与化工公司BASF和软件开发商Materialise等关键行业参与者合作。
Essentium 的 HSE 180-S 3D 打印机
HSE 280i HT 3D打印机
Essentium HSE 280i HT是一款独立双挤出机(IDEX)的工业3D打印机。在大多数IDEX系统具有在X轴上独立但在Y轴上锁定在一起的打印头的情况下,280i HT在这两个方面都是完全独立的。这样,用户可以利用3D打印机标配的五种不同的构建模式:单头模式、支撑模式、多进程模式、复印模式和独立模式。Essentium HSE 280i HT配备了防滑、高扭矩挤出系统和线性伺服电机,使打印速度达到500mm/s.
Teipel补充说:“这是业内独立双挤出机(IDEX)机器,我们相信HSE 280i HT 3D打印机将改变行业规则,为制造商提供大规模3D打印机床。”此外,该设备配备695 x 495 x 600mm的构建体积。尽管大多数工业FFF系统都依靠加热的成型室,但Essentium的新机器采用了一种多模式加热方法,该方法旨在直接加热零件而不是加热周围的空间,从而消除了冗长的加热构建室的时间。不仅如此,HSE 280i HT配备的喷嘴高达温度可以达到550ºC,与Essentium的新型PP-CF丝材(一种碳纤维含量为20%的聚丙烯)一起推出。该材料与LEHVOSS Group合作开发,具有出色的机械性能、耐化学性和低表面能,这使其特别适用于有机硅和聚氨酯成型应用。
用 Essentium HSE 280i HT 进行聚合物 3D 打印
以上就是小编给大家详细介绍的ESSENTIUM重磅推出HSE 280i HT 独立双挤出机(IDEX)工业3D打印机的详细内容。上海锦廷机电科技有限公司着力于3D打印复合材料的研发以及应用。公司的产品和服务面向汽车、工业制造、能源以及医疗等行业。 在增材制造领域,公司作为德国Apium公司、日本Mimaki公司、美国Essentium中国区授权合作伙伴,不仅提供包括全新Apium 医疗3D打印机、Mimaki全彩3D打印机、Essentium工业系列3D打印机及相关材料,同时AM Center为工业、航空航天、医疗、科研等领域提供基于3D打印和复合材料的创新工艺以及解决方案。
- 荧光探针应用细胞成像,怎样找活体细胞
- 用SPAD512S在3D成像中的应用
用SPAD512S在3D成像中的应用
在从空间成像到生物医学显微镜、安全、工业检查和文化遗产等众多领域,对快速、高分辨率和低噪声3D成像的要求非常高。在这种情况下,传统的全光成像代表了3D成像领域最有前景的技术之一,因为其超高的时间分辨率:
3D成像是在30M像素分辨率下每秒7帧的单次拍摄中实现的,对于1M像素分辨率为每秒180帧;无多个传感器,近场需要耗时的扫描或干涉技术。然而常规全光成像导致分辨率损失,这通常是不可接受的。我们打破这种限制的策略包括将一个全新的和基础性的采用上一代硬件和软件解决方案。基本思想是通过使用新型传感器来利用存储在光的相关性中的信息实现一项非常雄心勃勃的任务的测量协议:高速(10–100 fps)量子全光成像(QPI)具有超低噪声和前所未有的性能分辨率和景深的组合。所开发的成像技术旨在:在成为第一个实际可用和适当的“量子”成像技术超出了经典成像模式的固有限制。除了基础感兴趣的是,该技术的量子特性允许在3D上提取信息来自极低光子通量下的光相关性的图像,从而减少场景暴露于光照。对QPI的兴趣是由潜在的相对于其他已建立的3D成像技术的优点。实际上,其他与QPI不同,方法需要精细的干涉测量,如数字测量全息显微镜或相位恢复算法,如傅里叶全息图,或快速脉冲照明,如飞行时间(TOF)成像。此外,QPI提供了无扫描显微镜模式的基础,克服了共聚焦方法。
量子全光相机有望提供全光成像的优势,主要是超快和免扫描的 3D 成像和重聚焦能 力,其性能是经典相机无法企及的。全光成像设备能够在单次拍摄中获取多视角 图像.它们的工作原理是基于对给定场景中光的空间分布和传播方向的同时测量。获取 的方向信息转化为快速 3D 成像所需的重聚焦能力、可增加的景深(DOF)和多视角 2D 图像的 并行获取。 在全光照相机中,方向检测是通过在标准数码相机的主镜头和传感器之间插 入微透镜阵列来实现的。传感器获取复合信息,该复合信息允许识别检测到的光来自 的物点和透镜点。然而,由于结构(使用微透镜阵列)和基本(高斯极限)原因,图像分辨率与获 得的方向信息成反比地降低;因此,在基于简单强度测量的设备中,在衍射极限下的全光成像 被认为是无法实现的。
图(a)传统全光成像(PI)设备的方案:物体的图像聚焦在微透镜阵列上,而每个微透镜将主透镜 的图像聚焦在后面的像素上。这种配置需要与方向分辨率的增益成比例的空间分辨率的损失;(b)显 示了相关全光成像(CPI)设置的方案,其中方向信息是通过将物体聚焦的传感器检索到的信号与收集 光源图像的传感器相关联而获得的。
为了实现全光成像,我们正在寻求一个超高性能的探测器,一个相关部分是通过用基于尖端技术的传感器(如单光子雪崩 二极管(SPAD)阵列)取代商用高分辨率传感器(如科学 cmos 和 emccd 相机)来确定的。SPAD 基本上是一个光电二极管,其反向偏置电压高于其击穿电压,因此撞击其光敏区域的单个 光子可以产生电子-空穴对,从而触发次级载流子的雪崩,并在非常短的时间尺度(皮秒) 内产生大电流。这种操作方式被称为盖革模式。SPAD 输出电压由电子电路感测并直 接转换成数字信号,进一步处理以存储光子到达和/或光子到达时间的二进制信息。从本 质上来说,SPAD 可以被看作是一个具有精密时间精度的光子-数字转换装置。SPADs 也可以 选通,以便只在短至几纳秒的时间窗口内敏感。如今,单个 SPAD 可以用作大 型阵列的构建模块,每个像素电路都包含 SPAD 和即时光子处理逻辑和互连。有几种 CMOS 工艺可供选择,可以定制关键 SPAD 性能指标和整体传感器或成像器架构.灵敏度和 填充因子有一段时间落后于科学 CMOS 或 EMccd,但近年来已大幅赶上。 根据 QPI 的要求,我们选择使用由 EPFL AQUA laboratory group 开发的 SwisSPAD2 阵 列,其特点是 512×512 像素分辨率,这是迄今为止最广泛、SPAD 阵列 之一。传感器内部由 256×512 像素的两半组成,以减少信号线上的负载和偏斜,实 现更快的操作。这是一个纯粹的二进制门控成像器,即每个像素为每帧记录 0(无光子)或 1(一个或多个光子),读出噪声基本为零。传感器由 FPGA 控制,FPGA 产生门控电路和读出 序列的控制信号,并收集像素检测结果。在 FPGA 中,在发送到计算机/GPU 进行分析和存 储之前,可以进一步处理得到的一位图像,例如,累积成多位图像。对于准直光,通过微 透镜阵列,最大帧速率为 97.7 kfps,10.5%的自然填充因子可以提高 4-5 倍 (优化后的 模拟预计会有更高的值);在 520 纳米(700 纳米)和 6.5 伏过量偏压下,光子探测概率为 50% (25%)。该器件还具有低噪声(室温下每像素平均暗计数率通常低于 100 cps,中值约 低 10 倍)和纳秒门控电路。
SwissSPAD2 门窗口轮廓。图中标注了转换时间和栅极宽度。栅极宽度可由用户编程,内部激 光触发模式下的最小栅极宽度为 10.8 ns。
SwissSPAD2 显微照片(左)和像素示意图(右)。像素由 11 个 NMOS 晶体管组成,7 个具有厚氧化 物,4 个具有薄氧化物栅极。像素在其存储电容器中存储二进制光子计数。像素内门定义了相对于 20 MHz 外部触发信号的时间窗口,其中像素对光子敏感。
全全光相机是一种全新的 3D 成像设备,利用 动量-位置纠缠和光子数相关性来提供全光设备典型的重新聚焦和超快速、免扫描的 3D 成像能力,以及标 准全光相机无法实现的显著增强的性能:衍射极限分辨率、大焦深和超低噪声;然而,为了使所 提出的器件的量子优势有效并吸引最终用户,需要解决两个主要挑战。首先,由于相关测量需要大量的帧 来提供可接受的信噪比,如果用商业上可获得的高分辨率相机来实现,量子全光成像(QPI)将需要几十秒 到几分钟的采集时间。第二,为了检索 3D 图像或重新聚焦 2D 图像,对这大量数据的加工需要高性能和耗 时的计算。为了应对这些挑战,我们正在开发高分辨率单光子雪崩光电二极管(SPAD)阵列和超快速电子设 备的高性能低级编程,结合压缩传感和量子层析成像算法,旨在将采集和加工时间减少两个数量级。还将 讨论开发 QPI 设备的途径。
下面我将介绍下我们昊量光电所有一款SPAD512S相机,对全光成像具有很大的帮助。
我们的相机相对其他产品具有如下优点:
1. 相机具有很高的填充因子,并且还带有微透镜。
2. 暗噪声非常小
3. 成像速度快
4. 面阵像素大,分辨率高
相关文献:
https://doi.org/10.3390/app11146414
对于定制设备像素,我们完全符合您的需求 - 我们喜欢挑战!为此,我们与业内一些供应商密切合作欢迎大家来电咨询。
如果您对SPAD512S单光子相机有兴趣,请访问上海昊量光电的官方网页查看更多SPAD512S单光子相机系列产品:
https://www.auniontech.com/details-1782.html
更多详情请联系昊量光电/欢迎直接联系昊量光电
关于昊量光电:
上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。
- 3d机器视觉及功能成像未来发展怎么样
- PerkinElmer 推出可获得更优质的高内涵筛选结果的全新微孔板
更优质的图像数据和更可靠的结果
有助于生命科学研究人员更深入地了解疾病
专注于提高人类健康及其生存环境安全的lingxian公司 PerkinElmer Inc. 今天宣布推出专为高内涵筛选 (HCS) 而打造的 CellCarrier? Ultra 384 孔微孔板。该孔板设计经过改进,可在 HCS 应用(例如表型筛选和三维疾病模型研究)中获得更高质量的图像数据和更可靠的结果。这种功能组合让研究人员能够更深入地了解疾病,有助于加速更为GX的新型疗法的研发。
“PerkinElmer 在 HCS 仪器与消耗品方面拥有深厚的专业背景,有助于我们利用指示人体生理学状况的生理相关疾病模型,为希望以无偏差且具有统计学意义的方式测定细胞内变化的科学家开发创新型解决方案。”PerkinElmer 生命科学与技术部总裁 Brian Kim 说道,“诸如此类微孔板的创新为科学家配备了强大的研究工具,让他们可以更加准确地对疾病进行深入分析,从而开发出更为有效的新型ZL方案。”
CellCarrier? Ultra 384 孔微孔板专为在高内涵筛选应用中获得更高性能而设计,而在该应用中成像表面对于高分辨率图像和高质量数据的生成而言至关重要。此孔板拥有黑色外观,经精密设计,其表面极其平整,可实现GX成像。孔板采用环烯烃制成,这是一种光学性质与玻璃类似的塑料,能提供更为清晰的图像。
微孔板的其他功能包括:采用高数值孔径水浸式透镜并结合超低孔板底部时能够更好地观察孔、经过改进的板盖设计可减少蒸发、拐角预留空间可在堆叠时避免损坏成像表面、提供多种包被选择以适应具体应用。
此微孔板是 PerkinElmer 高内涵筛选完整解决方案的一部分,该解决方案包括:Operetta? 高内涵成像系统、Opera? Phenix? 高内涵筛选系统、Columbus? 图像数据管理和分析系统以及 HC Profiler?。
有关 PerkinElmer Cell Carrier Ultra 384 孔微孔板的详细信息,请单击此处。
PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的lingxian公司。据报道,该公司 2013 年收入约为 22 亿美元,拥有约 7,600 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请致电 1-877-PKI-NYSE 或访问 www.perkinelmer.com。
参与评论
登录后参与评论