仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

亚微米红外新技术受到BTV关注,再聚焦微塑料监测核心难题!

Quantum Design中国子公司 2020-09-18 10:06:05 364  浏览
  • 导读:

    近日,Quantum DesignZG作为先进科学仪器代表企业接受了《BTV北京科教卫视》的专访,本次专访主要以全新的非接触式亚微米分辨红外拉曼同步测量新技术如何解决微塑料监测难题为主题,专访节目已于近期在【BTV北京科教卫视】栏目播出。

    微塑料污染日益严重 监测技术备受关注

        近年来,微塑料污染问题已在范围内引起公众和各国政府的关注,逐渐成为影响世界经济和社会发展的重大性挑战。我国政府对此问题也给予了高度重视并设点开展了海洋微塑料污染的试点监测,主要采用的监测方法有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及拉曼光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术。但在实际操作中上述技术仅可对几微米颗粒物进行检测,使微塑料的监测和研究面临诸多困难。

    【BTV北京科教】关注:微塑料监测前沿技术

        Quantum Design公司引进的非接触式亚微米分辨红外拉曼同步测量系统新设备mIRage,因为其能够实现亚微米的分辨率、非接触、液相样品的直接观测等全方面的技术突破,获得科技创新R&D100大奖,并引起了国内外的广泛关注,近日【BTV北京科教卫视】对公司进行了专访,ZD介绍了这种新的红外技术在微塑料监测领域的突破和应用。

    非接触式亚微米分辨红外拉曼同步测量系统突破哪些技术难点?

        Quantum DesignZG表面光谱部门销售总监韩铁柱博士在公司应用实验室向记者详细的做了介绍:“非接触式亚微米分辨红外拉曼同步测量系统克服了传统红外光谱仪空间分辨率受限于红外光波长的问题,将分辨率从原来的10-20微米提升到了0.5微米。并且可以实现同时、同样品区域、相同分辨率的红外光谱和拉曼光谱测试,非接触测量、液相样品可以直接观测,测量过程更简单、便捷”。

        随后,韩铁柱博士补充道:“从这套设备引进以来,我们已经为国内很多高校和研究所进行测试,今天我们正在测试一个海洋微塑料样品。我们只需要将盛放样品的载玻片放置到样品台上,关上舱门即可,所有参数调节、控制以及数据分析,都可以通过软件完成。”

        在测试结果中,我们可以观察到除了有几个微米的大颗粒之外,还有很多尺寸在1到2个微米或者更小的颗粒,相关颗粒的含量和成分可以通过光谱图像和谱峰获取到,如此高的分辨率是传统的红外光谱无法实现的。

    mIRage在微塑料监测中的优势及应用

        正如韩铁柱博士所介绍的,非接触式亚微米分辨红外拉曼同步测量系统是一台多功能、全方位的微塑料表征“科研利器”,它可以对液体样品中微塑料的物理(微观形貌、尺寸)和化学(聚合物类型及结构)性质进行全面的直接表征。不仅如此,该系统还在各个功能方面均有全新的技术突破,可以助力科研工作者更加准确地对微塑料进行监测。

    01超高空间分辨率成像

        目前科学家所使用的传统红外成像技术通常只能用于表征10-20 μm的样品,很难表征更小尺寸的微塑料,非接触式亚微米分辨红外拉曼同步测量系统则突破了这一限制,使得成像的空间分辨率可以达到0.5 μm,从而可以轻松地对小于10 μm的微塑料进行成像表征。

    图1. 滤纸表面尺寸小于10 μm的微塑料成像结果

    02红外拉曼同步测量

        科学家在进行物质鉴定时通常会采用多种表征技术以更加精确的确定物质结构。然而在进行多种表征时,很难保证完全相同的监测环境,使得不同表征结果间均会存在一定的误差。非接触式亚微米分辨红外拉曼同步测量系统可以实现同步同区域的红外和拉曼表征,这两种互补的光谱表征技术可以帮助科研人员更加准确地进行物质结构分析。如图2所示,通过与标准谱图对比,研究人员可以清楚地鉴别微塑料中存在的两个主要的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。

    图2. A:图1区域的红外谱图;B:图1区域的拉曼谱图

    03单波长可视化化学分布成像

        除此以外,非接触式亚微米分辨红外拉曼同步测量系统还可以对特定波长进行可视化的化学分布成像分析。如图3所示,科研人员对任意区域的微塑料进行点分析即可发现微塑料不同位置处的化学结构不同,进一步,通过对特征信号的单波长峰进行成像分析(图4),可以清晰地分析出微塑料中不同聚合物的分布结构情况。

    图3. 微塑料成像结果及对应标注位置的红外和拉曼谱图

    图4. 单波长化学分布成像图(波长:1642 cm-1

    全新技术提效微塑料监测

        在此次采访中,【BTV北京科教卫视】向大家展示了非接触式亚微米分辨红外拉曼同步测量系统在微塑料成像及结构分析中的出色表现和独特优势。Quantum DesignZG期望这种全新的红外光谱技术可以帮助国内研究者在微塑料领域有所突破,为国家的科研进展贡工作献一份力量,目前公司的应用实验室正在和相关的科研工作者在样机上积极开展各种样品的实测合作。

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

亚微米红外新技术受到BTV关注,再聚焦微塑料监测核心难题!
导读:

近日,Quantum DesignZG作为先进科学仪器代表企业接受了《BTV北京科教卫视》的专访,本次专访主要以全新的非接触式亚微米分辨红外拉曼同步测量新技术如何解决微塑料监测难题为主题,专访节目已于近期在【BTV北京科教卫视】栏目播出。

微塑料污染日益严重 监测技术备受关注

    近年来,微塑料污染问题已在范围内引起公众和各国政府的关注,逐渐成为影响世界经济和社会发展的重大性挑战。我国政府对此问题也给予了高度重视并设点开展了海洋微塑料污染的试点监测,主要采用的监测方法有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及拉曼光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术。但在实际操作中上述技术仅可对几微米颗粒物进行检测,使微塑料的监测和研究面临诸多困难。

【BTV北京科教】关注:微塑料监测前沿技术

    Quantum Design公司引进的非接触式亚微米分辨红外拉曼同步测量系统新设备mIRage,因为其能够实现亚微米的分辨率、非接触、液相样品的直接观测等全方面的技术突破,获得科技创新R&D100大奖,并引起了国内外的广泛关注,近日【BTV北京科教卫视】对公司进行了专访,ZD介绍了这种新的红外技术在微塑料监测领域的突破和应用。

非接触式亚微米分辨红外拉曼同步测量系统突破哪些技术难点?

    Quantum DesignZG表面光谱部门销售总监韩铁柱博士在公司应用实验室向记者详细的做了介绍:“非接触式亚微米分辨红外拉曼同步测量系统克服了传统红外光谱仪空间分辨率受限于红外光波长的问题,将分辨率从原来的10-20微米提升到了0.5微米。并且可以实现同时、同样品区域、相同分辨率的红外光谱和拉曼光谱测试,非接触测量、液相样品可以直接观测,测量过程更简单、便捷”。

    随后,韩铁柱博士补充道:“从这套设备引进以来,我们已经为国内很多高校和研究所进行测试,今天我们正在测试一个海洋微塑料样品。我们只需要将盛放样品的载玻片放置到样品台上,关上舱门即可,所有参数调节、控制以及数据分析,都可以通过软件完成。”

    在测试结果中,我们可以观察到除了有几个微米的大颗粒之外,还有很多尺寸在1到2个微米或者更小的颗粒,相关颗粒的含量和成分可以通过光谱图像和谱峰获取到,如此高的分辨率是传统的红外光谱无法实现的。

mIRage在微塑料监测中的优势及应用

    正如韩铁柱博士所介绍的,非接触式亚微米分辨红外拉曼同步测量系统是一台多功能、全方位的微塑料表征“科研利器”,它可以对液体样品中微塑料的物理(微观形貌、尺寸)和化学(聚合物类型及结构)性质进行全面的直接表征。不仅如此,该系统还在各个功能方面均有全新的技术突破,可以助力科研工作者更加准确地对微塑料进行监测。

01超高空间分辨率成像

    目前科学家所使用的传统红外成像技术通常只能用于表征10-20 μm的样品,很难表征更小尺寸的微塑料,非接触式亚微米分辨红外拉曼同步测量系统则突破了这一限制,使得成像的空间分辨率可以达到0.5 μm,从而可以轻松地对小于10 μm的微塑料进行成像表征。

图1. 滤纸表面尺寸小于10 μm的微塑料成像结果

02红外拉曼同步测量

    科学家在进行物质鉴定时通常会采用多种表征技术以更加精确的确定物质结构。然而在进行多种表征时,很难保证完全相同的监测环境,使得不同表征结果间均会存在一定的误差。非接触式亚微米分辨红外拉曼同步测量系统可以实现同步同区域的红外和拉曼表征,这两种互补的光谱表征技术可以帮助科研人员更加准确地进行物质结构分析。如图2所示,通过与标准谱图对比,研究人员可以清楚地鉴别微塑料中存在的两个主要的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。

图2. A:图1区域的红外谱图;B:图1区域的拉曼谱图

03单波长可视化化学分布成像

    除此以外,非接触式亚微米分辨红外拉曼同步测量系统还可以对特定波长进行可视化的化学分布成像分析。如图3所示,科研人员对任意区域的微塑料进行点分析即可发现微塑料不同位置处的化学结构不同,进一步,通过对特征信号的单波长峰进行成像分析(图4),可以清晰地分析出微塑料中不同聚合物的分布结构情况。

图3. 微塑料成像结果及对应标注位置的红外和拉曼谱图

图4. 单波长化学分布成像图(波长:1642 cm-1

全新技术提效微塑料监测

    在此次采访中,【BTV北京科教卫视】向大家展示了非接触式亚微米分辨红外拉曼同步测量系统在微塑料成像及结构分析中的出色表现和独特优势。Quantum DesignZG期望这种全新的红外光谱技术可以帮助国内研究者在微塑料领域有所突破,为国家的科研进展贡工作献一份力量,目前公司的应用实验室正在和相关的科研工作者在样机上积极开展各种样品的实测合作。

2020-09-18 10:06:05 364 0
线上讲座| 微塑料追踪鉴定新技术——非接触式亚微米分辨红外拉曼同步测量系统

[报告简介]

    作为一种新兴污染物,微塑料以纳米、微米到毫米尺度充斥在从海洋到陆地的所有环境里,这些污染物不仅有进入到细胞或生物体内的高风险,甚至会对整个食物链产生影响,因此对微塑料种类和成份的监测和鉴定技术显得尤为重要,可为未来制定有效的FZ手段提供准确详细的数据支持。

    目前微塑料检测是使用普通傅里叶红外光谱或拉曼光谱对样本的种类和组成进行鉴定,需要进行复杂样本处理,如浮选,多级过滤等,并且普通傅里叶红外光谱技术,空间分辨率比较有限,极限的分辨也仅能达到几个微米,且光谱准确性容易受到弹性光散射所产生的米氏散射效应的影响,使得全面检测和鉴定微塑料的种类和成分结构信息变得十分困难。

    Z近基于光热显微红外技术的非接触式亚微米分辨红外拉曼同步测量技术,突破了传统傅里叶红外光谱技术的局限,红外光谱的空间分辨率提高了几十倍,达到~500 nm,并且测量更简单,更快速,无需复杂的样品制备过程,结合液体检测模式和同步拉曼技术,让更快、更准确的进行微塑料的追踪、监测和研究成为可能,正成为下一代标准的方法。

    本报告将从当前微塑料监测和研究领域存在的测量问题和挑战出发,讨论新一代非接触式亚微米红外和同步拉曼技术带来的巨大改变及其潜在优势,并结合当前一些微塑料领域的研究成果和应用案例进行详细探讨,希望对当下环境微塑料的监测、研究及有效防控有所帮助。



[注册链接]

PC端用户点击http://live.vhall.com/209781916报名 ,手机用户请扫描上方二维码进入报名


[主讲人介绍]

唐红杰 博士

材料学博士,毕业于ZG科学院过程与工程研究所,美国加州大学河滨分校和特拉华大学博士后。主要研究方向为无机纳米功能材料合成与制备,及在能源存储和转换领域的应用。2019年加入Quantum DesignZG子公司表面光谱仪器销售和技术团队,担任产品经理,从事PSC亚微米非接触红外拉曼同步测量系统mIRage, Delong低压透射电子显微镜,easyXAFS台式X射线吸收精细结构谱仪和Arradiance原子层沉积系统及等相关产品的应用开发、技术支持及市场拓展。


[报告时间]

开始  2020年06月9日  14:00

结束  2020年06月9日  15:00

请点击注册报名链接,预约参加在线讲座


[直播好礼]

看直播赢好礼,更多大奖:蓝牙运动手环、智能测温水杯、多功能数据线... ...


2020-06-04 14:10:22 395 0
微塑料研究前沿丨微塑料监测遇难题,我们该何去何从?

近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年192 个沿海国家和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和新兴环境问题治理提供支撑。

在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 可低至仅为1 μm),使微塑料的研究仍处于起步阶段。

作为世界先进仪器平台,Quantum DesignZG时刻关注国家重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建科技平台。聚焦于微塑料监测难题,Quantum DesignZG表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒级时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用ZL的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。

为更好的服务国内科研用户,Quantum DesignZG北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。

精选案例:

目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。

该工作中,作者首先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。

图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比

为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。

图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C)

为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。


图3.  PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。

参考文献:

[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.



2020-08-12 15:03:45 405 0
亚微米红外拉曼同步光谱测量技术用于颗粒物分析—微塑料,纤维和大气气溶胶

题:The mIRage IR+Raman Dual Channel Microspectroscopy: Particle and Contamination Analysis


[报告简介]

    颗粒物无处不在,气溶胶、PM2.5、灰尘、棉絮、污染物、微塑料、药物粉末和化学残留物对生活的方方面面都有着很大的影响。对这些微粒的积极识别有助于确定它们在人体内的潜在影响,并可以揭示这种物质的来源,作为未来消除这种影响的一步。

    然而,识别单个粒子的化学组成对分析科学提出了重大挑战,因为颗粒物的尺寸通常比红外光的波长更小。传统较弱的红外光源加上小于10 µm的颗粒尺寸,会导致明显的光谱噪声,难以进行有效的组成识别。更加复杂的是,小颗粒锐利边缘的散射像差会导致红外峰的漂移和异常的带形状。这些困难大大降低了人们正确解释小粒子红外光谱结果的信心。通常认为,传统的FTIR仅可以可靠地分析大于20 µm的粒子。尽管使用了新型红外激光器(如QCL激光器),小颗粒的红外吸收变化仍然很小,实际的空间分辨率在5 ~ 20微米之间, 而由于散射像差引发的数据和光谱信息的可译性差也未能得到改善。

    PSC (Photothermal Spectroscopy Corp. )公司新发布的mIRage亚微米IR+Raman显微镜将独特的光学光热红外(O-PTIR)技术与同步拉曼光谱技术相结合,直接解决了上述挑战。该系统利用固定波长的探测光束直接感应材料的光热变化,从而提供可靠的红外吸收光谱。这种方法对小到几百纳米的粒子提供了较高的灵敏度。尽管粒子直径很小,这些光谱的红外吸收带不含任何散射像差,并可在常规红外数据库中搜索来实现快速的未知物种鉴定。另外同步拉曼显微镜为O-PTIR光谱在同一位置、同一时间、同一分辨率下提供了补充和验证的结果。这一独特的功能只需简单的鼠标点击,即可提供无与伦比的物种识别信心,并显著节省时间,从获得两个独立的光谱数据通道。

    在这次研讨会中,Mike Lo博士将深入探讨基于O-PTIR技术的mIRage显微光谱和IR+Raman技术, 并结合几个具体的应用案例,来探讨它们在分析颗粒物方面的显著优势。我们诚挚欢迎各位前来Quantum Design北京实验室进行mIRage红外+拉曼同步测量系统样机的参观和使用。

[注册报名]

PC端用户点击https://live.vhall.com/681269078报名,手机用户请扫描上方二维码进入报名

[主讲人介绍]

Michael K. Lo  博士

美国加州大学洛杉矶分校获得化学和生物分子工程博士学位,并获得项目管理专业认证 (PMP)。目前是美国PSC公司亚太地区应用和业务发展经理,拥有15年以上的仪器相关经验,涉及从IR/Raman, AFM和电子显微镜到材料合成和聚合物组成调配等研究领域。他在超越传统光学衍射极限的红外仪器的开发和应用方面有着丰富的经验。

[报告时间]

开始  2020年07月24日  14:00

结束  2020年07月24日  15:00

请点击注册报名链接,预约参加在线讲座

[直播好礼]

看直播赢好礼,更多大奖:蓝牙运动手环、智能测温水杯、多功能数据线... ...


2020-07-20 16:30:26 362 0
4月30日《生物塑料表征——亚微米同步红外+拉曼光谱的聚合物

[主讲人]

Dr. Isao Noda


Danimer Scientific首席科学官和高级创新副总裁


美国特拉华大学科学与工程学院教授

Dr. Curtis Marcott


Light Light Solutions, Danimer Scientific高级合伙人


美国特拉华大学材料科学与工程系教授


[报告时间]

Apr. 30th.  周四 上午10:00 - 11:00


[注册链接]

https://register.gotowebinar.com/register/290268177486935051

 

[报告简介]

    Isao Noda博士和他的同事利用O-PTIR和Raman (IR+Raman)技术,在之前未能达到的数百纳米的空间分辨率下,探索了生物塑料(PHA/PLA)薄片界面处的空间化学分布,揭示了PHA和PLA界面边界处的一些新发现。两者之前被认为是不可混溶的,但通过对二维相关光谱(2-D Correlation Spectroscopy,2DCOS)数据分析,研究者发现两种聚合物在界面处存在很高程度的混合且结晶度下降,从而解释了这两种生物塑料的高相容性。


    另外,Curtis Marcott博士也将介绍O-PTIR的突破性技术,并通过讨论一系列的聚合物应用实例来展示O-PTIR技术的潜在优势。


·   利用远场光热红外光谱(O-PTIR)技术,在红外波段以小于500 nm的分辨率测量聚合物的空间结构与分布

·   相同位置,相同时间,相同分辨率的红外+拉曼分析,Z终实现分子振动光谱的协同作用


[温馨提示]

该网络研讨会有回放,可供大家以后点播观看,欢迎大家在研讨会期间和会后进行提问。


2020-04-28 13:29:41 280 0
亚微米级是什么
亚微米级是什么
2010-10-28 17:54:12 436 2
成果速递|亚微米空间分辨同步IR + Raman光谱成像分析 PLA/PHA生物微塑料薄片

    来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是Z终回归自然,安全而又环保。

    虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的功能材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术(O-PTIR)的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理

图1. 非接触亚微米分辨红外拉曼同步测量系统—mIRage结构示意图

    光学光热红外技术(O-PTIR)是一种新兴的光谱分析技术,可以提供几百纳米尺度上高空间分辨的振动光谱,且远低于传统红外显微镜的衍射极限(~10-20 μm)。在O-PTIR光谱学中,高频率调制下的强红外光束源,如量子级联激光器(QCL),用于照射样品。当红外光束波数与样品分子振动频率相匹配时,红外光被吸收,能量被转化为热。当被激发的分子回到基态时,温度会以光源调制的频率发生波动,从而引发相应的体积变化(光声效应)和折射率变化(光热效应)。这些信号可被具有远低于传统红外源空间衍射极限的高度聚焦的可见激光束所探测,同时在同一位置上伴随O-PTIR信号产生一个拉曼散射信号,从而实现真正的同时红外吸收和拉曼散射测量,并具有亚微米级的空间分辨率。

    O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。首先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射极限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。

    该工作中,作者首先对这PHA和PLA的结合面进行了固定波数下的红外成像(图2)。通过对比可以发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用O-PTIR技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。

图2. 使用O-PTIR技术实现PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比

    为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图3)。从羰基(C=O)伸缩振动区和指纹区(图3 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图3 C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。

图3. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合O-PTIR图谱(C)

    为获取更详细的界面处PHA/PLA组分的空间分布规律,同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)被用来分析羰基拉伸区域采集到的红外谱图(图4A和4B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过O-PTIR技术对该区域进行了同步红外和拉曼分析(图4C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。

图4.  PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)


参考文献:

[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045.


2020-05-28 09:39:14 404 0
大尺寸微塑料样品的ATR-红外光谱法检测

作者:查姗姗

       如果利用常规的透射法对大尺寸(肉眼可见)的微塑料进行定性,需要对样品进行破坏(热压膜或者溶解后涂抹法),无法做到原位检测。借助ATR(衰减全反射)法,可以直接、原位地对样品进行检测。

      本文介绍了利用珀金埃尔默Frontier红外光谱仪对微塑料样品进行ATR-红外光谱法检测的实例。

      -适于大尺寸微塑料(> 100 μm)的定性 ;

      -有效减少样品前处理工作,实现原位检测 ;

      -钻石压头,不易磨损,便于清洁 ;

      -智能型压力传感器保证压头与样品间实现Z优接触,提升仪器灵敏度与数据重复性 ;

      -ATR模式可被仪器自动识别,并且软件可以实时显示压力值,保证测试条件的一致性。

       检测过程: 样品经过前处理净化后,直接挑拣出来放在ATR附件的测试晶体上,旋下ATR压力杆压紧样品,即可开始采集谱图。

实际海水样品中微塑料的定性检测-ATR法直接检测并谱库检索结果:A-聚乙烯,B-涤纶,C-PET,D-聚苯乙烯 


       由实验结果可见,利用ATR-红外光谱法对大尺寸微塑料样品进行检测,具有过程简便、结果准确、灵敏度高等优势。




2019-12-30 13:57:37 454 0
使用显微红外分析微塑料的操作流程

介绍

      微塑料正成为一个重大的环境问题。定期、有新闻价值的重大研究揭示,塑料和微塑料存在于偏远的地理位置,或作为污染物存在于不同消费品(特别是食品和饮料)中以及海洋生物消化系统内。微塑料的来源可能是初生微塑料,即专门设计或制造成小尺寸的材料,或者从较大材料开始但在环境中分解成较小碎片的次生微塑料。Z初,微塑料经定义为尺寸小于5 mm的塑料材料,但是,尽管尚未有公认的定义,但该定义现在经更普遍地表述为尺寸处于1 mm且小至微米水平范围内的塑料颗粒。

      环境中大量的塑料污染是一个看得见的重大问题,亟待解决。小尺寸的微塑料人眼并不能看到,但它对水生和海洋物种的健康有着重要影响,并且Z终可能会进入人类食物链。

      分析含有微塑料的环境样品对确定其普遍性及其影响至关重要。一系列的分析技术已应用于微塑料的分析。在所采用的技术中,红外(IR)光谱分析,更具体而言是红外显微镜,是检测和鉴别微塑料的主要分析技术。

红外显微镜的微塑料分析操作流程

从原始样品到Z终结果有几个步骤,包括采集样品到数据分析。所涉及的步骤可能会有所不同,这取决于样品类型和红外(IR)分析制备样品所需的样品净化量。工作流程如表1

所示。

表1.微塑料分析操作流程所涉及的步骤。

      不同来源的样品和不同类型的样品都需要对其微塑料的含量进行分析。不同的样品在采集和净化方面均有其自身的复杂性。例如,瓶装水中微塑料的分析无需对样品净化,而只需进行简单的过滤即可分析。而污水或动物摄入的微塑料则需花费几天时间去净化样品,消解其他有机材料,从而对微塑料进行“洁净”分析。

样品采集

以下对不同来源的样品所采取的采样策略做简要概述。

水采样

      小溪、河流到湖泊、远海等多种不同水环境含有微塑料。此外,据悉来自水处理厂的水也含有微塑料。采样要求之间存在相似之处,因为要采集所需粒径范围内的所有微塑料,并且了解水样的体积也非常重要。采用一致的采样策略,可确定微塑料的数量和/或质量随着时间的推移呈增加还是减少趋势。

      样品采集对海水和淡水具有不同的要求,这主要是因为水密度不同。大多数合成高分子材料的密度低于海水,这意味着微塑料一般漂浮在水面上,但是许多高分子类型材料都会沉没在淡水系统中。用于采集海水表面样品的典型设备是一个拖于船后的已知网目尺寸的曼塔拖网。对于水层面下的样品,则采用合适的浮游生物采集网。这种方法也适用于湖泊和水湾。网目尺寸是一个重要的参数,因为太小的网目会导致网在样品采集过程中受到相当快的阻塞。样品采集的体积和面积可通过使用流量计以及根据网的入口尺寸和采集过程中移动的距离得以确定。为测试河流水,通常将网悬挂于河流中的一个固定点,并且网的位置可得到设置或调整,以便在水面上或水面下的固定深度进行采集。

沉积物采样

      在许多情况下,可在沉积物样品(例如在海滩或河岸上)的表面上观察到(微)塑料。在这种情况下,在分析前可易于对样品进行提取和清理。但是,微塑料存在于沉积物的更深层处,因此需要采用一种采样策略。通常采集已知质量或体积的沉积物,并确定每单位体积颗粒的质量或数量。沉积物样品可采集自海床、湖泊或河床,或者在潮汐或河流水位降低时采集自海滩或河岸。沉积物样品需要进一步的样品净化以便提取微塑料用于分析,下文将对该过程做介绍。

动物摄入的塑料采样

      据悉,塑料和微塑料存在于多种海鸟和海洋生物的胃中,且通常会导致死亡。1较大的塑料材料可从生物的解剖胃中物理提取而得,其在分析前需进行清理。为确定包括微塑料在内的塑料总量,有必要在分析前通过消解完全去除生物材料。下文将对消解的各种方法作讨论。消解过程会留下塑料材料并且有望去除所有其他材料。

家用品和日用消费品采样

     在家庭中有几种微塑料被释放到排水系统中。众所周知,洗衣机在清洗的过程中会产生成千上万的纤维。2此外,尽管根据不同国家和地区的立法,塑料微珠的使用正在逐步淘汰,但是许多日用消费品和化妆品(例如牙膏和沐浴露)均含有塑料微珠成分。来自家用品的微塑料的采样可通过在洗衣机的出水口或排水系统的出水口上安装具有合适网目尺寸的筛网得以完成。就去角质剂和身体磨砂膏而言,其大多数成分具有水溶性,因此在过滤前,将样品与开水混合通常能去除微塑料之外的所有物质。3

样品净化

      为从红外显微镜分析中获得Z佳结果,必须确保样品洁净且无任何干扰物质(例如生物基质)。以下是红外分析前用于样品净化所采用的不同方法的简要概述。

密度分离法(漂浮)

      塑料具有多种密度范围,因此一些塑料会漂浮在淡水或海水中,而另一些则会沉没。这种漂浮原理可用于将塑料材料与密度通常较高的其他物质(例如沉积物)分离。通过将样品与(密度较高的)饱和盐溶液混合,可扩大漂浮的塑料材料的范围,并且可从液体的上层部分去除塑料。

      塑料的密度范围大约从0.9g/cm3(聚丙烯(PP)和低密度聚乙烯(LDPE))至1.4g/ cm3(聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC))不等。4

      因此对于典型密度为1-1.05g/cm3的淡水或海水样品,PP和LDPE将通过漂浮从密度显著较高的沙子或沉积物中分离出来。

      已采用一系列将溶液密度Z大化的饱和盐溶液,以便使更多种范围的塑料材料得以漂浮。5,6,7采用了密度为1.2-1.8g/cm3的氯化钠、溴化物和碘化物以及密度为1.7g/cm3的氯化锌。分离过程包括搅拌样品,通常是沉淀物样品,并使溶液沉降。然后取溶液的上清液过滤后分析。

样品消解

      样品消解的目的是去除会干扰微塑料分析但不会影响微塑料本身的生物、无机或有机材料。根据样品基质,可采用一系列不同的样品消解技术。用于消解的材料可具有酸性、碱性、氧化性或酶促性。8,9,10对于酸性消解,采用的是热硝酸,但是这将导致一些高分子类型材料降解。10%的氢氧化钾溶液已作为基底物。经证明,处于30-40%范围内的过氧化氢溶液具有有效性。但是,消解可能较缓慢,其需要耗费几天时间才可完成。采用蛋白酶K作为酶消解具有有效性。这种处理速度显著加快,并且在50℃下两小时的消解可从样品中去除大量生物材料并且不会降解塑料本身。

过滤

      在一些样品类型中,过滤是指从样品基质中分离出所需的微塑料(例如瓶装水中微塑料的采集和测量)。在许多情况下,过滤是样品净化过程后的附加步骤。过滤过程需要符合分析的要求,并且可用作样品净化步骤。使用不同网目尺寸的筛网可以将塑料收集调整到分析技术所需的样品尺寸大小。例如,Z初采用大的网目尺寸可过滤掉存在的较大塑料或者可去除其他较大的碎片,以便防止过滤器堵塞。微塑料可受到较小网目尺寸的筛网或滤膜的截留。采用标准红外光谱仪易于分析较大的塑料。但是,红外显微镜更常用于微塑料的分析。在某些情况下,对筛网上采集的微塑料所作的红外显微镜分析可直接在筛网上进行。3过滤过程的优化将在后面进行描述。

用于红外分析的样品制备

      红外光谱分析是识别和鉴定高分子材料的主要分析技术。材料的红外光谱为该材料提供唯yi的“指纹”,并且可与大量的光谱库作比较以进行正确识别。采用标准的红外光谱仪器和衰减全反射(ATR)采样技术易于测量尺寸不小于100微米左右的微塑料纤维和颗粒。小型便携式红外光谱仪器(图1)可携带至船上,以便立即识别采集的样品。11

      对于利用ATR进行测量的较大样品,通常无需样品制备。将样品直接置于ATR附件上,采用压力臂施加压力并扫描样品。但是,应注意的是,在环境中存在了相当长时间的塑料已风化,并且其表面可能覆有生物膜。ATR是一种表面技术。因此,在这种情况下,建议将塑料样品切片并测量样品的内部体积而非受损/受包覆表面。

       红外显微镜或红外成像系统可用于测量更小的颗粒。为从此类技术中获得Z佳结果,必须将微塑料从样品基质中分离出来。上述样品采集和样品净化的介绍中已对该方法作出讨论。但是,具体操作步骤可针对红外显微镜进行优化。

图1.具有ATR采样模块的Spectrum Two红外光谱仪。


优化红外显微镜分析的过滤过程

      样品过滤会将微塑料分离至合适的基底上用于分析。滤膜具有多种尺寸、过滤材质和孔径尺寸,以便优化过滤过程。某些过滤材料在光谱的红外线区域内具有显著的吸附作用,并且这些材料将掩盖因感兴趣的颗粒引起的吸附。因此,采用Z合适的过滤材料极其重要。一系列不同的滤膜类型和尺寸已得以评价,以便为红外显微镜的微塑料分析确定Z佳滤膜类型(表2)。

表2.评估一系列不同的滤膜与显微红外测试的适用性

      滤膜直径将影响样品容量和过滤能力并且应保持具有合理的尺寸,以便减少红外成像所需的时间。孔径将决定待截留的Z小粒径,但该尺寸不能易受某些样品基质堵塞。对于与红外分析之间的兼容性,(归因于红外分析的近似衍射极限)颗粒需大于1.5微米,并且滤膜的可用光谱范围极其重要。每个滤膜的相对成本可能非常重要,但是对于样品净化可能耗费几小时或几天时间的样品,滤膜的成本就并非十分重要。对于样品处理量较高的实验室,这应该是一个重要的考虑因素。

      下文将对红外显微镜的采样模式作更详细的讨论,但是对于滤膜上的颗粒分析,其选择通常受限于透射或反射。在进行多种颗粒的自动测量时可使用ATR,但是样品容易受到交叉污染。滤膜类型需要在透射或反射模式下对红外光不出现任何显著的吸收。表1所示是记录了滤膜的红外透射和反射光谱,并确定每种类型的可用范围。图2a所示为透射模式总结,而图2b所示为反射模式总结。

      镀金聚碳酸酯滤膜具有极好的反射能量,但无透射能量,而PVDF滤膜在透射和反射模式下均显示出显著的吸收带,因此不合适。

      建议使用硅滤膜进行透射分析,并使用硅、银膜或镀金聚碳酸酯进行反射分析。

      硅的唯yi缺点是相对成本较高以及不是标准过滤系统所直接兼容的尺寸,属于“非标准”尺寸(矩形尺寸)。

图2a和2b。不同滤膜类型的透射和反射范围。

两种不同滤膜类型的示例光谱如图3所示。

图3.不同类型滤膜的透射和反射范围。

显微红外分析

图4.PerkinElmer Spotlight 400红外成像系统


采样模式

      采用红外测量常规样品的原则,使用显微红外对微塑料样品进行测量。采样模式是透射、反射或ATR。相同的优势和不足之处同样适用于显微红外。

1.透射

      为在透射模式下测量样品,样品应置于合适的红外透射基底上。样品厚度通常应小于50微米,以免达到吸收饱和。如果分析包含少量颗粒,且可能“挑选”颗粒,则Z好的方法是将颗粒定位于显微镜样品载物架的13mm KBr窗片上。如此可确保分离颗粒,并将采集到颗粒的纯光谱。如果颗粒厚度大于50微米,则可将样品置于微型金刚石压池中,压至更薄的尺寸,可以在显微镜台上进行透射测量。但是,在大多数情况下,即使使用显微镜工具,样品也显得太厚或不容易分离。如前所述,可使用合适的红外透射模式的滤膜,而无需制备样品或将颗粒移除至其他基底上。另外,在大多数情况下,某些颗粒的尺寸小于50微米,而另一些则更大。去除大量颗粒的过程耗时长且困难。

2.反射

      当分析目的是定性样品时,通常不在本体聚合物上进行反射测量(直接镜面反射法)。所获得的光谱将包含混合的光谱成分,即表面反射和透射/反射成分。此类成分会导致光谱失真,特别是光谱的较强波段,并会干扰光谱库的搜索过程。但是,透射/反射成分通常可能是主要的光谱贡献,并产生可识别的光谱。当红外光束照射到样品时,一些光束将直接反射离开样品表面,其余光束将进入(透射)或穿过样品。如果将样品置于高反射基底上,如金反射镜或反射滤膜,则光束将反射离开该基底并回穿样品,从而有效地提供双重透射。因此,从反射测量中可获得优质的光谱,但是,Z强波段可能非常强。对于有一定厚度的样品,反射比透射效果好。

3. ATR

      ATR已成为在FT-IR仪器上简单测量和识别样品的标准技术。该技术无需制备样品,并且可作用于一系列不同的样品尺寸,包括在透射或反射方面不起作用的厚度过大的样品。这是一种表面测试技术,因此,所获得的光谱是材料表面的光谱,而非体积光谱。此外,所测量的有效样品厚度处于1或2微米的范围内,这导致红外光谱较弱。但是,所获得的光谱强度足以识别材料或材料的主要成分。显微红外可配备微型ATR晶体,以对微粒进行自动ATR测量。如果样品位于坚硬的固体基底上,如金反射镜、窗口材料或显微镜载玻片,并且含有非常少量的颗粒,则在每次测量/颗粒之后,只要清洁ATR晶体,ATR即可成为一种可使用的技术。ATR的测试原则是基底与ATR晶体之间的对样品的压缩。在测量之后即释放压力时,样品经常留在ATR晶体上,而并非回到基底上。因此,如果在不清洁晶体的情况下测量多个颗粒,交叉污染将是一个主要问题。因此,通常不采用显微ATR采样模式。

      在ATR成像中,表面明显较大的ATR晶体与样品接触,并在整个晶体表面上进行ATR测量。

显微红外的测量模式

      红外显微镜能够测量单个微观粒子,但其还有一个额外的优点,即能够以全自动模式运行来测量样品中的多个颗粒,也能够对整个样品(如完整的滤膜)进行绘图(map)或成像(image)。自动化应用于每种前述的不同的采样模式。显微镜还配有可视摄像机,以允许操作员查看其正在使用的样品,并设置位置进行分析。

点模式

      在点模式下,软件允许用户选择一个或多个对应于颗粒的测量位置。然后,红外显微镜将驱动载物台至测量位置,以进行扫描,然后移动至下一个样品位置。如果样品含有少量颗粒,则上述方法可能是一种非常快的光谱收集方法。对于每个位置,软件控制的光阑大小应可视地包围颗粒,以避免杂散光。与标准红外光谱测量一样,需采用合适的背景扫描,并且应使用与样品扫描相同的孔径尺寸在红外显微镜上来执行。对于透射,应在无样品的空白区中测量背景。对于反射,应在反射基底的空白区中记录背景。对于ATR,应使用干净的晶体来测量背景。

      软件内的颗粒检测算法能够分析可见图像来发现样品内颗粒的存在。然后,软件将自动扫描所有颗粒和适当背景的光谱。相对于手动选择分析位置,该方法具有显著的速度优势,或者,如果对整个样品进行绘图或成像,则可节省大量时间。图5所示为颗粒识别工具。

图5.分析图像发现存在的颗粒。


绘图(Mapping)

     Mapping实验涉及定义待测量的样品面积(这可能是几毫米),以及定义整个样品上测量的X、Y间距。例如,如果样品为0.7 mm×1 mm,并且应每100微米进行一次测量,则Mapping实验将进行70次测量(7×10)。在每个点上收集红外光谱,并在整个面积上生成样品的红外图。

      Mapping实验利用红外显微镜中存在的单点检测器(通常是MCT检测器),并将测量单个光谱、移动载物台、测量光谱,移动载物台。对于小样本区域或大XY间距,这已足够。但是,对于大样本区域(如滤膜),或测量小XY间距的非常小的颗粒,Mapping实验可能非常慢,并且需要很长时间。


成像(Imaging)

      成像Imaging实验类似于绘图Mapping实验,不同之处在于成像实验使用具有元件阵列的检测器同时测量多个点,而非单个检测器元件,导致整体测量速度显著加快。阵列检测器可能是线性阵列或焦平面阵列。线性阵列具有几何形状n×1,其中n通常为16或32,而焦平面阵列具有几何形状n×n,其中n通常为16、64或128。焦平面阵列检测器的价格较高,并且其光谱截止值约为s/b 950 cm -1,以致于忽略某些重要的光谱信息,而线性阵列检测器具有低至s/b 600 cm -1的完整MCT光谱范围。

图6. Mapping实验收集一行数据点,然后移动至下一行,直至完成为止。


图7a和7b.(a)线性阵列检测器收集一“列”数据点,然后移动至下一“列”。(b)焦平面阵列检测器在一次测量中收集数列和数行数据点。

红外成像的一个示例如图8所示。

图8.从化妆品配方中过滤的微塑料颗粒的总红外吸光度图像

      在红外图像中的每个像素均有与之相关的完整的红外光谱。在点模式下工作时,系统将每个颗粒生成一个光谱。在图像模式下工作时,系统将每像素生成1个光谱,从而导致每次实验产生大量数据。例如,以6.25μm像素大小测量的10 mm×10 mm图像将包含超过250万个光谱。软件的各种处理工具均考虑到简化数据解析步骤,Z强大的是主成分分析(PCA)。在PerkinElmer光谱图像软件中,该分析法通过选Show Structure功能得以引用。该功能将使用PCA在样品内寻找不同的化学组分。不同的PCA组分将表示存在的不同材料,并针对不同组分生成图像,以指示样品内不同材料的分布位置。图9a-d所示为一个示例



图9a-d.(a)总吸光度红外图像。(b)显示混合组分的PCA分析。不同的组分采用不同的颜色,以区分不同的化学成分类型。(c)2组分图像。(d)4组分图像。

图10.观察到的颗粒光谱;组分4的图像即聚乙烯(顶部),以及组分2的图像即聚丙烯(底部)。



参考文献

1.J van Franeker et al,Environmental Pollution 159(2011)2609-2615.

2.Browne A.,2011,Accumulations of microplastic onshorelines worldwide:sources and sinks Environmental,Science and Technology.

3.Robertson I.,PerkinElmer Application Note 012079_01,“Detection and Identification of Microplastic Particles in Cosmetic Formulations Using IR Microscopy”.

4.https://www.stelray.com/reference-tables/,  accessed 3rd August 2018.

5.Labo magazine–Oktober 2010,“Wasserverschmutzungdurch Mikroplastikpartikel”,www.labo.de.

6.Imhof,H.K.,et al,Limnology and Oceanography-Methods,10,524–537.

7.Liebezeit,G.,and Dubaish,F.(2012).Bulletin of Environmental Contamination and Toxicology,89(1),213–217.

8.Thompson,R.C.,et al,Science,304(5672),838.

9.Liebezeit,G.,and Dubaish,F.(2012).Bulletin of Environmental Contamination and Toxicology,89(1),213–217.

10.Claessens,M.,etal,Marine Pollution Bulletin,70(1–2),227–233.

11.Cole,M.,et al,Scientific Reports,4,4528.


2019-06-26 17:22:53 1227 0
亚微米液体颗粒计数器的检测范围是多少?
亚微米液体颗粒计数器的检测范围是多少?
2018-11-19 12:59:06 436 0
全新亚微米红外&拉曼同步测量关键技术助力多层薄膜内部组成分析

    包装薄膜材料常使用传统红外光谱进行表征,但传统FTIR通常只能测单一红外光谱,不具备样品红外光谱成像功能或成像空间分辨率受红外波长限制,通常仅为5-10 μm。在实际应用中,层状材料越来越薄,这对常规FTIR技术的空间分辨率提出了极大的挑战。

全新光学光热红外光谱技术

    光学光热红外光谱技术(O-PTIR)可在非接触反射模式下对多层薄膜进行亚微米级的红外表征,同时探针激光器会产生拉曼散射,从而以相同的亚微米分辨率在样品的同一点同时捕获红外和拉曼图像。基于光学光热红外光谱技术的非接触亚微米分辨红外拉曼同步测量系统的工作原理是:光学光热红外光谱技术通过将中红外脉冲可调激光器与可见探测光束结合在一起,克服了红外衍射极限。将红外激光调谐到激发样品中分子振动的波长时,就会发生吸收并产生光热效应。如图1所示,可见光探针激光聚焦到0.5 μm的光斑尺寸,通过散射光测量光热响应。红外激光可以在一秒钟或更短的时间内扫过整个指纹区域,以获得红外光谱。

图 1. 非接触亚微米分辨红外拉曼同步测量系统 红外和拉曼光谱的光束路径示意图。

 红外&拉曼同步测量

    传统的透射红外光谱通常不能用于测量厚样品,因为光在完成透射样品之前会被完全吸收或散射,导致几乎没有光子能量到达检测器。由于光学光热红外光谱技术是一种非接触式技术,因此非接触亚微米分辨红外拉曼同步测量系统可以对较厚的样品进行红外测量,极大地简化了样品制备过程,提升了易用性。在图2中,作者使用非接触亚微米分辨红外拉曼同步测量系统针对嵌入环氧树脂中的薄膜样品横截面进行了分析。

    图2线阵列中各点之间的数据间隔为500 nm。 由于非接触亚微米分辨红外拉曼同步测量系统与传统FTIR光谱具有极好的相关性,因此可以使用现有的光谱数据库搜索每个光谱。对红外光谱的分析对照可以清楚地识别出不同的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。

图 2.上:薄膜横截面的40倍光学照片;中:红外光谱从标记区域收集;下:同时从标记区域收集拉曼光谱。

化学组分分布的可视化成像

    当生产层状薄膜时,产品内部的化学分布是产品完整性的重要组成部分。非接触亚微米分辨红外拉曼同步测量系统独特地实现了高分辨率单波长成像,以突出显示样品中特定成分的化学分布。非接触亚微米分辨红外拉曼同步测量系统可以在每层的独特吸收带处采集图像,以此实现显示层的边界和界面的观察。图3展示了多层膜截面的光学图像。从线阵列数据可以看出,中间位置存在一个宽度大约为2 μm的区域,该区域与周围区域的光谱差异很大。红色光谱显示1462 cm‑1处C-H伸缩振动显著增加。

图3. 上:薄膜截面的40倍光学照片;下:标记表示间距为250 nm的11 µm线阵列。

    红外单波长成像使我们能够清晰地可视化层状材料的厚度和材质分布,如图4所示。从图像中可以看出,非接触亚微米分辨红外拉曼同步测量系统红外显微镜可以在非接触状态下进行反射模式运行,以高的空间分辨率提供单波长图像。

图4. 红外单波长成像层状材料的成分分布。

总结

    通过同时收集红外和拉曼光谱,科学家发现非接触亚微米分辨红外拉曼同步测量系统可被广泛用于分析各种多层膜。收集的光谱与传统的FTIR光谱显示出> 99%相关性,并且可以在现有数据库中进行搜索。此外,使用非接触亚微米分辨红外拉曼同步测量系统进行单波长成像可实现亚微米分辨率样品中组分的可视化。通过该技术,我们可以更好地了解薄膜材料的整体构成。总体而言,非接触亚微米分辨红外拉曼同步测量系统首次提供了可靠且可视化的亚微米红外光谱,目前它已在高分子、生命科学、临床医学、化工药品、微电子器件、农业与食品、环境、物证分析等领域得到广泛应用并取得了良好的效果,显示出了广阔的应用前景。



2020-10-19 10:39:41 390 0
QDZG北京实验室引进PSC非接触亚微米分辨红外拉曼同步测

    2020年,QDZG迎来了公司的第十六个年头。为满足国内日益增长的红外仪器测试需求,更好的为国内的科研工作者提供专业技术支持和服务,Quantum DesignZG子公司北京总部的样机实验室迎来了一个新的面孔——美国PSC公司(Photothermal Spectroscopy Corp., 前身Anasys)非接触亚微米分辨红外拉曼同步测量系统 mIRage

     mIRage 红外拉曼同步测量系统是一个全新的光谱测试系统,基于独 家ZL的光热诱导共振(PTIR)技术, mIRage产品突破了传统红外光谱系统的两大难题:

1.  无需接触式的ATR部件及AFM探针技术,即可实现亚微米空间分辨的红外光谱和成像分析

2.  非接触的反射测量模式,提供媲美透射模式的IR谱图质量和标准的谱图数据库,大大简化了样品制备和图谱分析过程,并支持厚样品和液体样品的测试

图 1. mIRage系统及O-PTIR技术原理示意图

    mIRage采用可调脉冲式中红外激光器激发样品表面,产生光热诱导热膨胀效应,然后将可见光聚焦到样品上作为“探针”探测产生的光热效应,从而实现快速、简易的样品探测,且不接触样品。基于O-PTIR技术,mIRage可支持多种红外测量模式,包括反射模式下高速的单点(图2 A)和线性扫描红外谱图(图2 B)以及亚微米分辨的单一波长下的高光谱成像(图2 C和D),精确分析样品目标位置上的化学组成及分布。

图2. mIRage系统数据示例(A)单一纤维不同位置的O-PTIR谱图. (B)高分子薄膜红外线性扫描谱图.(C)多层薄膜单一波长下的高光谱红外成像及谱图. (D) 数据存储单元单一波长下的O-PTIR成像, 用于污染检测

    另外mIRage可与拉曼联用,实现同时同地相同分辨率的IR和Raman测试(图3A),无荧光风险;且可选配透射模块(图3B),用于观察液体样品,满足科研工作者的不同测试需求。

图3. 血红细胞的O-PTIR和Raman同步谱图测试及成像. (B) 透射模式下观察液体样品(上皮细胞)

    mIRage非接触式亚微米分辨红外拉曼同步测量系统,可以快速,准确的实现样品亚微米尺度的红外光谱和成像检测,被广泛应用于多层薄膜、高分子聚合物、生命科学(骨头,细胞,头发等)、医药、法医鉴定、缺陷分析、微电子污染、食品加工、地质学及考古和文物鉴定等多种应用领域。更多的应用仍在不断开发和探索中,我们期待与您早日合作,共同进步!

2020-04-30 14:10:49 272 0
聚焦 | 石化行业VOCs监测整体解决方案

引言

作为国民经济的支柱性产业,石化行业在助力国家经济发展与满足人民生活所需的同时,也不可避免地面临着造成大气污染恶化的严峻考验。随着绿色发展相关政策的不断贯彻落实,石油石化企业高浓度挥发性有机气体VOCs的减排与控制需求也迫在眉睫。

*图片来源于正版图文网站Pixabay

那么今天,小编先来带大家一睹为快,来看看赛默飞强大的石化行业VOCs监测系统究竟是如何为石化企业提供更经济更gao效的解决方案?解决此类企业生产过程中的后顾之忧的呢? 

环境质谱仪Sentinel PRO

在VOCs监测过程中的应用

作为赛默飞世尔科技众多VOCs监测工具中的神器,Sentinel PRO环境质谱仪是其声名卓著的在线分析仪器Prima PRO的孪生兄弟,同样拥有非常出众的性能和众多成功应用案例。作为传承于英国VG公司的高端质谱仪产品,它能够提供非常快速、准确和可靠的分析结果,就像一双具有穿透功能的千里眼和顺风耳,帮助我们的客户实时掌握空气中特征挥发性有机物的微小浓度变化。

上图为:Thermo Scientific Sentinel PRO环境质谱仪

相对于5900(GC-FID)或气质联用仪(GC-MS)通常只能分析单点位置中组分众多PAMS或117种空气中VOCs,Sentinel PRO依托分析速度快和测量下限(LDL)低的优势,将Prima PRO的多点测量能力发挥到了ji致:能够在10分钟时间内同时实现对120点位VOCs的实时监测。

相较于普通便携式的VOCs分析仪需要专业人员携带、定期对特定点位VOCs的检测方法,Sentinel PRO如其名字的中文翻译“哨兵”一样,能够24×7、全天候不停歇地对于石化厂、化工厂各类使用、存储挥发性有机物的装置和场合进行监测,能够有效对于各类爆炸性和对于人体职业健康有影响的特征组分早期微量泄露进行识别、预警和溯源。

所以,结合了上述快、准、不间断测量的长处,以及结构简单、可靠,维护量小的天然优点, Sentinel PRO被台塑(FPC)、ZG石油、沙美(Saudi Aramco)、杜邦、道化学(Dow Chemical)等众多客户应用于不同的装置上,或是被国内化工园区管理者用于园区内众多不同类型化工厂VOCs泄露和溯源的监测,成为了VOCs厂界监测和LDAR工程的好伙伴。

Sentinel PRO丰富我们监测手段,他们一起编织了我们全面的VOCs监测方案,确保我们能够在ZD点位实现多种VOCs的组分检测,也能够在一定范围内实现关键点位的快速监测覆盖和早期预警、后期溯源,同时结合赛默飞TVA2020C为开展LADR工程提供更为全面的支持。

全新上市的6000 VOC CEMS系统在石化行业的应用

石油炼制行业的VOC废气排放主要管控环节包括:重整催化再生烟气排放、催化剂再生烟气排放、废水处理有机废气收集处理装置排放、有机废气回收处理装置排放、油品转运、油品储运、裂解炉废气排放等。

大部分石化企业生产工艺稳定,有机废气治理主要采用RTO或者RO工艺进行治理,治理效果较好,排放浓度一般在20-100mg/m3,操作温度一般在50-120℃之间。石化行业有明确的防爆要求,需要使用的VOC CEMS系统符合一定的现场防爆要求和相应的防爆证书。根据国家和地方文件的要求,大部分客户需求监测内容为NMHC,部分企业会根据实际情况增加部分特征污染物的监测需求。

赛默飞VOC CEMS系统优势

赛默飞提供的全新6000 VOC CEMS监测系统,具有CCEP和防爆认证,完全满足并优于HJ1013的性能指标要求,可以给客户提供全面的监测需求系统。

上图为:Thermo Scientific 6000 型固定污染源挥发性有机物排放连续监测系统

•独特技术消减氧气干扰,大幅ling先国标要求,满足未来升级需求

•增加电子压力控制(EPC)模块和大气平衡阀,气路更优化,测量更加稳定准确

•全程加热无冷点,避免冷凝和腐蚀,提高仪器耐用性,减少维护成本

•直接火焰温度侦测技术,大幅缩短熄火响应时间,防止氢气泄漏,提升产品安全性

6000 VOC CEMS系统包括了NMHC分析仪、特征污染物分析仪、高温采样头、高温伴热不锈钢管线、高温样品预处理装置、高温直测湿度在线监测仪、氧化锆氧含量在线监测仪(根据需要)、温压流一体监测仪、DAS系统(包含国标日报、月报等标准报表)、PLC控制系统、分路供电控制、辅助供气和控制等设备。

参考谱图

注:1甲烷 2苯 3甲苯 4乙苯 5间对二甲苯 6异丙苯 7邻二甲苯 8苯乙烯

多款产品打造石化行业VOCs监测矩阵

除了刚刚提到的Sentinel PRO环境质谱仪与6000 VOC CEMS系统外,赛默飞还拥有多款应用于石化行业VOCs监测方面的仪器,比如:专为天然气、石油化工等行业防爆应用而设计的OPGAL EyeCGas红外气体摄像仪,对不可见光谱的高灵敏度,EyeCGas可以让用户通过肉眼检测到无组织排放气体的泄漏;应用于有毒挥发气体分析的Thermo Scientific TVA2020C,是一款使用火焰离子化(FID)和光离子化(PID)双检测器技术的本安便携式现场分析仪,可检测几乎所有有机和无机气体化合物,与单检测器技术相比,这种双配置以更快的速度读取有机和无机化合物,提供比同等尺寸设备更全面的气体覆盖。

再比如:Thermo Scientific 5800-GO系列便携式非甲烷总烃分析仪采用技术成熟、性能稳定的GC-FID技术,可以对样品中的甲烷/非甲烷总烃、苯系物等组分进行现场的定性和定量分析,检测限可达ppb级。该仪器完全符合有关VOC的国家标准和方法(HJ1012-2018等),可满足客户在各种场合对环境空气或污染源废气的现场测量;Thermo Scientific 5900系列环境VOCs在线分析仪,5900共拥有4大系列(A、B、C、D)和超过10种以上的标准配置,满足客户不同应用场合需求:从NMHC,到苯系物,到特征因子,到PAMS,到TO-14/TO-15;Thermo Scientific 5800-GM挥发性有机物在线气质联用监测系统包括在线VOCs富集系统、ISQ气质联用仪和气体发生系统,通过创新系统设计、灵活软硬件配置、优化分析方法可实现对空气中VOCs组分的24小时/7天连续定性定量分析。

互动福利


扫描下方二维码

免费 领取赛默飞

Sentinel Pro 环境质谱仪

VOCs监测详细应用方案



2020-08-28 09:22:15 483 0
线上讲座| 亚微米红外+拉曼同步显微光谱——化学成像和振动光谱新标准

[报告简介]

近年来,日益增长的对尺寸细小的亚微米物质高空间分辨率化学图像和光谱分析的需求,推动了现代振动光谱仪器向超分辨率和高灵敏度方向上进行革新。

为了获得可分析解释的数据和光谱信息,传统的红外仪器,即使使用了新型红外激光器(如QCL激光器),仍然依赖于探测长波长的中红外光,从而限制了传统红外技术的实际空间分辨率在5 - 20微米之间;与红外吸收光谱相反,拉曼光谱的空间分辨率取决于可见光的波长(400-700纳米左右),因此能在同一化合物上以非接触操作模式,实现亚微米衍射限制空间分辨率的振动模式检测。但由于拉曼在分子水平上探测光子的非弹性散射,因此需要更强的激发源,同时也带来了样品损伤的风险。

这几年发布的O-PTIR(光学光热共振红外)技术创新性的兼具亚微米空间分辨率以及红外直接检测物质红外吸收的特性,使红外光谱的空间分辨率提高了20倍。因为O-PTIR技术仅直接检测源于样品吸收红外辐射引发的变化,而不计算入射红外光和透过红外光的差异,使得O-PTIR光谱具有很高的清晰度和灵敏度,可以达到飞克(10-13克)级别。O-PTIR技术测量无需复杂样品准备,过程也无需机械和AFM探针等复杂操作,以一种全程和样品无接触,无分散散射相差的红外光谱获取方式来实现高精度、快速红外光谱及成像测量。

基于O-PTIR技术的商业化mIRage设备还能以相同的分辨率、同一时间和位置上同步进行红外和拉曼光谱数据测量,为增加测量数据的互补和验证结果的可信度提高了一种新的可能。

在本介绍中,Mike Lo博士将以400纳米高分子薄膜的分析检测为例,深入探讨传统FTIR和基于O-PTIR技术的mIRage显微光谱的区别和特点,并通过一系列非常有挑战性的样品测试结果和分析来展示基于O-PTIR技术的mIRage红外+拉曼同步显微光谱的独特功能与优势, 希望对各位听众的研究工作有所帮助。我们诚挚欢迎各位前来Quantum Design北京实验室进行mIRage红外+拉曼同步测量系统样机的参观和使用。

[注册链接]

PC端用户点击https://live.vhall.com/836447573?报名 ,手机用户请扫描上方二维码进入报名

[主讲人介绍]

Michael K. Lo  博士

美国加州大学洛杉矶分校获得化学和生物分子工程博士学位,并获得项目管理专业认证 (PMP)。目前是美国PSC公司亚太地区应用和业务发展经理,拥有15年以上的仪器相关经验,涉及从IR/Raman, AFM和电子显微镜到材料合成和聚合物组成调配等研究领域。他在超越传统光学衍射极限的红外仪器的开发和应用方面有着丰富的经验。

[报告时间]

开始  2020年06月30日  14:00

结束  2020年06月30日  15:00

请点击注册报名链接,预约参加在线讲座

[直播好礼]

看直播赢好礼,更多大奖:蓝牙运动手环、智能测温水杯、多功能数据线... ...

2020-06-28 13:14:48 377 0
红外显微ATR成像技术原位测试微塑料的方案




2019-06-10 13:42:52 108 0
科学家通过非接触式亚微米红外拉曼同步成像技术研究高内相乳液

在高内相乳液(HIPE)中,初始离散单元在聚合过程中或之后转变成由窗口高度互联聚合体的时间和方式,一直是一个有争议的问题。其中,以苯乙烯/二乙烯苯作为油相的油包水高内相乳液,是该领域研究的一个热点体系。在诱导聚合过程中,以支化的聚乙烯亚胺(PEI)为亲水端和聚苯乙烯(PS)链作为疏水端。这类大孔表面活性剂可以在大剂量范围内稳定HIPE并导致不同的开孔多聚形态。然而由于受到表征技术的限制,原位探测上述过程详细的机理仍然较为困难。

Photothermal Spectroscopy Corp研发的光学光热红外(optical photothermal infrared)表面成像新技术可适用于液体环境测试,为探索polyHIPE的窗口形成机理提供了机会。光学光热红外技术通过探测红外光被吸收后所诱导的热响应信号来测试待测样品的红外振动峰,该技术有四大优势:使用可见光为检测光,可以将分辨率提高到 ~ 500 nm;非接触式的光学显微镜;分辨率不依赖于红外光波长;不会产生弥散的伪影。有鉴于此,同济大学万德成教授课题组与Photothermal Spectroscopy Corp合作,利用基于光学光热红外技术(O-PTIR)技术的非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对polyHIPE的聚合体进行了红外光谱和成像分析,探究其演变过程及形成机理。

图1. A) 3%表面活性剂用量诱导的polyHIPE选取区域的光学照片,B)相应的mIRage图(条件: 红色代表强烈的反应,绿色代表几乎没有反应,而黄色代表对1492 cm-1处的激光束的中等反应),C)插图为典型的选定区域附近的局部表面形貌(通过SEM),D) 插图为立方状样品的光学照片(≈5×5×5 cm3)

如图1B所示,PS对在1492 cm-1处激光束有红外响应,对新鲜的多聚体表面进行该波长激光扫描,发现了三个有代表性的区域。区域1几乎没有PS信号,说明表面完全覆盖 PEI 大孔表面活性剂, 对其他组成不太敏感 , 区域3显示 一 个 强烈红外信号,对应 PS 块体人工样品处理后的横截面。区域2呈现出岛状的PS微区,点缀在大孔表面活性剂覆盖的表面。由此推断,PS微区可能起源于相分离诱导的大孔表面活性剂的析出。

图2. 在1600 (绿色)和1492 cm-1(红色)激光束照射下的多聚体表面的mIRage 2D O-PTIR图像。B)一系列的FTIR光谱提取采样点(箭头尾)。每个采样点的高度比为1600/1492 cm-1,如(C)所示,相邻的采样点为250 nm

进一步对区域2进行1600和1492 cm-1位置逐点热成像扫描得到二维图像(图2A),可以观察到一个不均匀的表面,表明发生了相分离。1600和1492 cm-1的波长分别用绿色和红色表示,PS对1600和1492 cm-1的激光束均有红外响应, PEI也对1600 cm-1的激光束有红外响。因此,如果表面仅仅是由PS决定的,那么1600和1492 cm-1的强度比应该不发生变化。1600/1492 cm-1红外强度比分布图(图2C)以及线性点提取红外光谱(图2B)都可以显示目标位置的表面化学成分,证实了相分离的发生。

综上所示,非接触亚微米分辨红外拉曼同步测量系统mIRage为polyHIPE表面相分离的存在提供了强有力的证据,有助于未来窗口的发展。

参考文献:

[1]. C. H. Li, M. Jin, D.C. Wan, Evolution of a Radical-Triggered Polymerizing High Internal Phase Emulsion into an Open-Cellular Monolith, Macromol. Chem. Phys. 2019, 220, 1900216.

2020-08-05 13:13:47 260 0
奥林巴斯智能激光显微镜,亚微米3D测量检测新体验

随着工业制造水平的不断提高,制造出的各类工业产品也越来越智能化,产品的升级随之而来的是产品的检测要求也越来越精细,对检测的设备也提出了更高的要求,尤其是半导体、平板显示、电子器件、高精密电路板制造以及材料等领域,所需要的显微镜检测设备越发精细化,不仅要极其准确还得智能。在众多的显微镜公司及显微镜产品中,奥林巴斯公司是世界中具有先进光学技术的代表企业,多年来一直在显微镜领域攻克难关,进行光学技术的创新,推出了与时俱进的奥林巴斯激光显微镜OLS5100,颠覆了传统激光显微镜,将大数据、科技智能等高端技术融入了新一代的3D测量激光显微镜中,助力我国工业领域的发展。

奥林巴斯LEXT OLS5100是全新的一代激光显微镜,它可观察纳米范围的台阶,可测量亚微米级别的高度差,还可测量从线到面的表面粗糙度,在这些方面上的测量上,OLS5100通过它的智能物镜选择助手和智能实验管理助手,以非接触、非破坏的观察方式轻松实现3D观察和测量,容易、准确、快速!

何为智能物镜选择助手?它如同机器人一样,给它下达指令,就能给你完成你想要的目的。智能物镜助手也一样,它能帮助您确定哪款物镜最适合用于样品表面的粗糙度测量。它通过三个步骤就能完成你对物镜的选择:首先,启动智能物镜选择助手功能。 第二,点击开始。第三,它就会确定并告诉你所选择的物镜是否适合当前被检测的样品。这样一来,就能顺利减少因错误选择物镜造成的实验时间浪费,同时还能让测量结果保持稳定,不受操作员技能水平的影响。

智能实验管理助手,它是一个帮助用户管理实验计划、采集和分析的软件。在测量过程中可根据软件生成的定制实验计划扫描样品,所有的检测分析过程全部显示在屏幕上,这样的可视化可让用户在分析中更容易发现问题,优化检测结果,从而节省更多的时间和人力。

制造业在变革,智能化转型升级是必然的结果,奥林巴斯不断开拓打造先进的测试和测量解决方案,为各行各业提供好用方便的检测武器。而奥林巴斯激光显微镜OLS5100顺应改革潮流,除了出色的激光共焦光学系统获得更加清晰的图像外,还配备了智能物镜选择助手和智能实验管理助手,无需制备样品、非接触面粗糙度分析和GX率的亚微米3D测量强大功能,测量准确、可靠稳定的奥林巴斯激光显微镜成为了制造研发和质量保障的重要设备。


2021-04-16 09:59:04 460 0
微信聚焦离子束测试交流群

聚焦离子束FIB测试交流群

FIB含义:

聚焦离子束(Focused Ion beam简写FIB)是将离子源(大多数FIB都用Ga,也有设备具有He和Ne离子源)产生的离子束经过离子枪加速,聚焦后作用于样品表面。作用:

1.产生二次电子信号取得电子像.此功能与SEM(扫描电子显微镜)相似

2.用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。

3.通常是以物理溅射的方式搭配化学气体反应,有选择性的剥除金属,氧化硅层或沉积金属层。

 

FIB应用:

FIB技术的在芯片设计及加工过程中的应用介绍:

1.芯片IC电路修改,切线连线。

用FIB对芯片电路进行物理修改可使芯片设计者对芯片问题处作针对性的测试,以便更快更准确的验证设计方案。 若芯片部份区域有问题,可通过FIB对此区域隔离或改正此区域功能,以便找到问题的症结。

FIB还能在Z终产品量产之前提供部分样片和工程片,利用这些样片能加速终端产品的上市时间。利用FIB修改芯片可以减少不成功的设计方案修改次数,缩短研发时间和周期。

2.Cross-Section 截面分析

用FIB在IC芯片特定位置作截面断层,以便观测材料的截面结构与材质,定点分析芯片结构缺陷。

3.Probing Pad

在复杂IC线路中任意位置引出测试点, 以便进一步使用探针台(Probe- station) 或 E-beam 直接观测IC内部信号。

4.FIB透射电镜样品制备

这一技术的特点是从纳米或微米尺度的试样中直接切取可供透射电镜或高分辨电镜研究的薄膜。试样可以为IC芯片、纳米材料、颗粒或表面改性后的包覆颗粒,对于纤维状试样,既可以切取横切面薄膜也可以切取纵切面薄膜。对含有界面的试样或纳米多层膜,该技术可以制备研究界面结构的透射电镜试样。技术的另一重要特点是对原始组织损伤很小。

5.材料鉴定

材料中每一个晶向的排列方向不同,可以利用遂穿对比图像进行晶界或晶粒大小分布的分析。另外,也可加装EDS或SIMS进行元素组成分析。

 

FIB第三方服务:

由于FIB价格昂贵,中小企业很难拥有自己的设备,不过现在市面上有很多设备可以提供对外服务,北京西二旗国软检测有带电镜和能谱功能的FIB,可以做切点观察,切线连线,表面观察,成分分析等。

延伸阅读:实验室介绍

北京软件产品质量检测检验ZX(简称:北软检测)成立于2002 年7月,是经北京市编办批准,由北京市科学技术委员会和北京市质量技术监督局联合成立的事业单位。2004年1月,国家质量监督检验检疫总局批准在北软检测基础上筹建国家应用软件产品质量监督检验ZX(简称:国软检测),2004年10月国软检测通过验收并正式获得授权,成为我国第,一个国     ,  家     ,级的软件产品质量监督检验机构。

 

     ZX依据国际标准 ISO/IEC 17025:2005《检测和校准实验室能力认可准则》和ISO 9001:2015《质量管理体系要求》建立了严谨的质量体系,拥有一  ,     流的软件测试平台,2600平方米的测试场地,1000多台套的测试设备和上百人的专业测试工程师队伍。目前具有资质认定计量认证(CMA)、资质认定授权证书(CAL)、实验室认可证书(CNAS)、检验机构认可证书(CNAS)、信息安全风险评估服务资质认证证书(CCRC),信息安全等级保护测评机构(DJCP)、ISO 9001:2015质量管理体系认证、ISO/IEC 27001:2013信息安全管理体系认证等各种资质。

 

      智能产品检测实验室于2015年底实施运营,能够依据国际、国内和行业标准实施检测工作,开展从底层芯片到实际产品,从物理到逻辑全面的检测工作,提供芯片预处理、侧信道攻击、光攻击、侵入式攻击、环境、电压毛刺攻击、电磁注入、放射线注入、物理安全、逻辑安全、功能、兼容性和多点激光注入等安全检测服务,同时可开展模拟重现智能产品失效的现象,找出失效原因的失效分析检测服务,主要包括点针工作站(Probe Station)、反应离子刻蚀(RIE)、微漏电侦测系统(EMMI)、X-Ray检测,缺陷切割观察系统(FIB系统)等检测试验。实现对智能产品质量的评估及分析,为智能装备产品的芯片、嵌入式软件以及应用提供质量保证。

文末福利:聚焦离子束测试交流群 客服微信a360843328

 

2019-09-26 12:30:35 380 0
水德在第四届全国(海洋)环境微塑料污染与管控学术研讨会广受关注

       6月5-8日,由华东师范大学、上海市海洋湖沼学会等主办的“第四届全国(海洋)环境微塑料污染与管控学术研讨会”在上海市召开。华东师范大学校长钱旭红院士,自然资源部东海局黄海波局长、生态环境部国家海洋监测中心黄菊英主任,上海市海洋湖沼学会理事长、河口海岸学国家重 点实验室李道季教授出席了开幕式并致辞。开幕式由河口海岸学国家重 点实验室吴辉教授主持,会议组织委员会主席李道季教授宣布大会开幕。水德受邀参加此次研讨会,并在分会场作题为《海洋微塑料调查技术与趋势》的报告,受到众多专家学者的关注。



大会开幕式

       本次研讨会共有来自全国各院校、科研院所、环境监测机构,以及涉及微塑料相关问题研究的知名教授与专家学者、业界人士等500余人参加。


       开幕式后,李道季、骆永明、姜雪峰和清华大学赵娜娜等4位特邀教授专家分别做了《我国海洋微塑料研究历史回顾与展望:从污染到治理》、《开展陆地环境微塑料研究,维持土壤健康与食物安全》、《温和条件真实塑料升级降解循环利用》和《塑料污染治理国际最 新进展和趋势》的大会主旨报告。



       此次研讨会主要包括大会主旨报告、专 题报告以及墙报展示等,其中,专 题报告又包括《环境塑料、微-纳塑料监测技术方法及应用》、《可降解塑料:应用、环境过程、风险与对策》、《海洋微塑料分布特征、入海通量及输运数值模拟》、《微塑料的海-气输运过程、通量及模式》等在内的十个专 题。


       水德技术总监符巧生在此次专 题报告中着重为大家介绍了几种海洋微塑料调查的技术,旨在将国际上海洋微塑料采样调查的先进技术引入中国并介绍给业内各位专家,努力为中国海洋微塑料研究、保护海洋环境提供更多新方案。


水德技术总监符巧生在分会场作报告

 

水德工程师同与会专家交流探讨


相关产品简介

丹麦KC-Denmark公司浮游生物泵


浮游生物泵可原位定点大体积过滤水中的浮游生物、微塑料等样品,增大样品背景量,有效计算该水层中浮游生物、微塑料的含量,研究其垂向分布规律。耐压水深可达6000米。


丹麦KC-Denmark公司微塑料采样泵

微塑料采样泵最初是在丹麦KC-Denmark公司参与欧盟项目——“洁净海洋”的基础上开发出来的,设计初衷是能够对海洋和湖泊水体中的塑料颗粒进行非常精确的测量。

在一次下水采样中,丹麦KC微塑料采样泵能够使用四个不同网目尺寸的过滤板来进行采样,并同时能够精确测量出泵水量。

四层过滤板:

5000μm,500μm,300μm和100μm

泵 速:12000L/h

最 大深度:40m


德国HYDRO-BIOS公司Manta微塑料采样网



Manta网是专为开阔而平静的水域、河流和湖泊设计的。Manta设计的独特之处,在于它的“翅膀”安装在支撑框架的两侧,以保持稳定。

网衣尺寸:200×30×15cm

开 口:30×15cm

目 径:300μm(可定制)


2023-06-12 15:09:27 86 0
PerkinElmer 2013城市巡讲再掀生命科学关注热潮

  从分子到机体,探寻人类生命的奥秘

   PerkinElmer 2013城市巡讲持续升温再掀生命科学关注热潮

  ZG,上海(2013年7月23日)--专注于提高人类健康及其生存环境安全的lingxian企业珀金埃尔默(PerkinElmer, Inc.)公司(NYSE:PKI)举办的“从分子到机体,探寻人类生命的奥秘”2013城市巡讲七月起将继续依次登陆天津、成都、广州以及上海。此次巡讲为生命科学研究领域的应用知识和实践经验分享提供平台,切实帮助ZG生命科学研究者开发和优化其创新应用、产品和研究流程。

  自四月启动以来,PerkinElmerZG城市巡讲坚持“密切联系应用,紧随市场导向”的方针,已先后在北京、武汉和南京三地成功举办,并获得与会专家的高度赞誉和业界广泛关注。其中,PerkinElmer提供的从体内到体外创新性研究及数据分析平台更是赢得了与会专家的一致关注及高度认可。为此,PerkinElmer在原计划六站巡讲之上,特在上海增设以“研究就要眼见为实”为主题的大型巡讲活动,全面解读PerkinElmer在生物影像技术领域的整体解决方案,为“PerkinElmer 2013ZG城市巡讲”wan美收官。

  共享lingxian科研成果,2013 PerkinElmer城市巡讲反响

  4月10日, PerkinElmer 城市巡讲在北京正式启动,作为今年巡讲首站,会议以“小动物活体光学成像技术与应用进展”为主题,邀请到来自国家纳米ZX、军事医学科学院、天津医科大学以及哈尔滨医科大学的专家,共同分享并探讨利用小动物活体光学成像技术在肿瘤、病毒及生物医学材料等领域的研究成果及Z前沿应用。

图1:PerkinElmer 2013城市巡讲北京站首战告捷

  4月19日,巡讲移师武汉以“Z新生物成像与分析技术在生命科学研究中的应用”为主题,特邀ZG科学院微生物所、ZG科学院生化与细胞生物学研究所以及北京大学的ZS教授与武汉当地的专家学者共聚一堂,就PerkinElmer活细胞共聚焦和高内涵成像分析技术的诸多应用技巧和未来发展方向展开热烈探讨,会议成效获得与会专家一致认可。

图2:PerkinElmer 2013城市巡讲武站汉持续升温

  5月21日,巡讲南京站期间,与会专家以“从细胞到活体全方位开展新药研究”为主题,围绕细胞定量分析与活体光学成像技术方面畅所欲言,并就细胞微观影像、细胞图像批处理方法、计算机技术在影像分析上的Z新的应用、动物模型的建立的意义与方法等课题进行了深入探讨。

图3:PerkinElmer 2013城市巡讲南京站再掀热潮

  助力人类健康研究, PerkinElmer生命科学解决方案创新科技前沿

  作为一家lingxian的科技公司,PerkinElmer是目前世界上唯yi一家能够提供从分子水平、细胞水平到临床研究整体解决方案的公司,其多项技术包括多标记检测技术、多维活细胞成像技术,活体动物成像技术以及数据管理和分析平台等均代表了该领域Z先进的水平,在人类健康研究领域搭建了从体外到体内的创新性研究平台。

  PerkinElmer亚太地区副总裁兼销售总经理Martina Bielefeld Sévigny博士表示:“为了将Z新的成像技术和软件技术更加有效的引入生命科学研究领域,让科学家直观真实的了解到生物学中的种种机理和现象,此次PerkinElmer城市巡讲带来了Z全面的生物影像技术解决方案,以Z前沿的医学研究成果帮助科学家找到更好的疾病ZL方案。”

  在此,PerkinElmer诚邀对活体成像、小分子药物开发、细胞和组织成像、生物和蛋白质组学以及数据分析和信息学软件领域有兴趣的研究人员参加本轮巡讲即将开始的天津、成都、广州及上海站。

  敬请继续关注我们的城市巡讲: web4.perkinelmer.com/2013citytour

  时间 地点 主题

  7月29日 天津 PerkinElmer检测技术在中药研究领域的应用

  9月26日 成都 新方法新技术在现代药物筛选与药物研发中的应用

  10月22日 广州 使用Z新研究技术搭建高水平转化医学研究平台

  11月19日 上海 PerkinElmer公司的生物影像技术整体解决方案研究就是要“眼见为实”

  欢迎登录www.perkinelmer.com.cn/lifescience,了解更多有关珀金埃尔默生命科学研究应用及解决方案的信息。

  关于珀金埃尔默

  珀金埃尔默(PerkinElmer, Inc.)公司是致力于改善人类及环境健康和安全的lingxian企业。2012年,该公司收入约为21亿美元,拥有约7,500名员工,服务于150多个国家和地区的客户,同时该公司还是标准普尔(S&P)500指数的成员。欲知详情,请致电800-820-5046 或登录我们的网站:www.perkinelmer.com.cn

2019-06-10 13:43:31 364 0

11月突出贡献榜

推荐主页

最新话题