仪器网首页 欢迎您: 请登录 免费注册 仪器双拼网址:www.yiqi.com
发求购 学知识 提问题 查标准 找商机 手机版
官方微信
QUANTUM量子科学仪器贸易(北京)有限公司
主营产品:低温物理、磁学、材料物理、样品制备、纳米及光谱表征及生物技术尖端设备
010-85120280
仪器网仪网通会员,请放心拨打!
产品中心
 
当前位置:首页>产品中心>电弧等离子体沉积系统
电弧等离子体沉积系统
  • 品牌:日本Advance Riko
  • 型号: APD
  • 产地:日本
  • 样册:暂无
  • 供应商报价: 面议
点击这里给我发消息在线留言
收藏  关注度: 1241
详细介绍

电弧等离子体沉积系统-APD

       日本Advance Riko 公司致力于电弧等离子体沉积系统(APD)利用脉冲电弧放电将电导材料离子化,产生高能离子并沉积在基底上,制备纳米级薄膜镀层或纳米颗粒。

       电弧等离子体沉积系统利用通过控制脉冲能量,可以在1.5nm到6nm范围内精确控制纳米颗粒直径,活性好,产量高。多种靶材同时制备可生成新化合物。金属/半导体制备同时控制腔体气氛,可以产生氧化物和氮化物薄膜。高能量等离子体可以沉积碳和相关单质体如非晶碳,纳米钻石,碳纳米管 形成新的纳米颗粒催化剂。


应用领域


1、制备新金属化合物,或制备氧化物和氮化物薄膜(氧气和氮气氛围);

2、制备非晶碳,纳米钻石以及碳纳米管的纳米颗粒;

3、形成新的纳米颗粒催化剂

(废气催化剂,挥发性有机化合物分解催化剂,光催化剂,燃料电池电极催化剂,制氢催化剂);

4、用热电材料靶材制备热电效应薄膜。


APD设备特点


◆  系统可以通过调节放电电容选择纳米颗粒沉积直径在1.5nm到6nm范围内。

◆  只要靶材是导电材料,系统就可以将其等离子体化。(电阻率小于0.01ohm·cm)。

◆  改变系统的气氛氛围,可以制备氧化物或氮化物。石墨在氢气中放电能产生超纳米微晶钻石。

◆  用该系统制备的活性催化剂效果优于湿法制备。

◆  Model APD-P支持将纳米颗粒做成粉末。Model APD-S适合在2英寸基片上制备均匀薄膜。



APD技术原理


1、在触发电极上加载高电压后,电容中的电荷充到阴极(靶材)上;
2、真空中的阳极和阴极(靶材)间,电子形成了蠕缓放电,并产生放电回路,靶材被加热并形成等离子体;

3、通过磁场控制等离子体照射到基底上,形成薄膜或纳米颗粒。


      

材料适用性:


APD适用于元素周期表中大部分高导电性金属,合金以及半导体。所用原料为直径10mmX17mm长圆柱体或管状体,且电阻率小于0.01 ohm.cm。下面的元素周期表显示了可制备的材料,绿色代表完全适用,黄色代表在一定条件下适用。

  

APD系统参数


1. 真空腔尺寸:400X400X300长宽高

2. 抽空系统:分子泵450L/s
3. 电弧等离子体源:标配一个,多3个
4. 沉积气压:真空或者低气压气体

  (N2, H2,O2,Ar)
5. 靶材:导电材料,外径10mm,长17mm
6. 靶材电阻率:小于0.01欧姆厘米
7. 电容:360uF X5 (可选)
8. 脉冲速度:1,2,3,4,5 Pulse/s
9. 操作界面:触摸屏
10. 放电电压:70V-400V

  (1800μF下大150V) 


 


APD-P

1.  粉末容器:直径95mm 高30mm

2.  形成粉末的速度:13-20cc

   (随颗粒尺寸和密度变化)

3.  旋转速度:1-50rpm


测试数据

■  利用APD制备氧化铁纳米颗粒


图1 三种不同碳基支撑物表面获得的氧化铁颗粒的HAADF-STEM图像及粒径分布统计图


表1 铁负载量、纳米颗粒粒径与电弧脉冲次数的关系


引用资料:Yumi Ida, et al. A useful preparation of ultrasmall iron oxide particles by using arc plasma deposition. RSC Adv., 2020, 10, 41523.


■  利用APD制备Fe-Co纳米颗粒



APD制备的Fe-Co纳米颗粒的SEM和EDS图谱


部分用户发表文献

2021

1. Kamal Prasad Sharma, Aliza Khaniya Sharma, Toru Asaka, Takahiro Maruyama. Transmissible Plasma-Evolved Suspended Graphene for TEM Observation Window. ACS Appl. Nano Mater. 2021, XXXX, XXX, XXX-XXX.

2. Ai Misaki, Takahiro Saida, Shigeya Naritsuka, Takahiro Maruyama. Effect of growth temperature and ethanol flow rate on synthesis of single-walled carbon nanotube by alcohol catalytic chemical vapor deposition using Ir catalyst in hot-wall reactor. Jpn. J. Appl. Phys., 2021, 60, 015003.

 

2020 

1. Yumi Ida, Atsushi Okazawa, Kazutaka Sonobe, Hisanori Muramatsu, Tetsuya Kambe, Takane Imaoka, Wang-Jae Chun, Makoto Tanabe, Kimihisa Yamamoto. A useful preparation of ultrasmall iron oxide particles by using arc plasma deposition. RSC Adv., 2020, 10, 41523.

2. K Miyazawa, T Nagai, K Kimoto, M Yoshitake, Y. Tanaka. HRTEM-EELS cross-sectional characterization of HOPG substrate with platinum nanoparticles deposited using a coaxial arc plasma gun. Diam. Relat. Mater., 2020, 101, 107623.

3. Xiao Zhao, Yutaka Hamamura, Yusuke Yoshida, Takuma Kaneko, Takao Gunji, Shinobu Takao, Kotaro Higashi, Tomoya Uruga, Yasuhiro Iwasawa. Plasma-Devised Pt/C Model Electrodes for Understanding the Doubly Beneficial Roles of a Nanoneedle-Carbon Morphology and Strong Pt-Carbon Interface in the Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2020, 3, 6, 5542–5551.

4. Naoto Todoroki, Shuntaro Takahashi, Kotaro Kawaguchi, Yusuke Fugane, Toshimasa Wadayama, Dry synthesis of single-nanometer-scale Ptsingle bondSi fine particles for electrocatalysis. J. Electroanal. Chem., 2020, 876, 114492.

5. Hiroshi Yoshida, Yusuke Kuzuhara, Tomoyo Koide, Junya Ohyama, Masato Machida. Pt-modified nanometric Rh overlayer as an efficient three-way catalyst under lean conditions. Catal. Today, (On line, in press).

6. Takahiro Maruyama, Takuya Okada, Kamal Prasad Sharma, Tomoko Suzuki, Takahiro Saida, Shigeya Naritsuka, Yoko Iizumi, Toshiya Okazaki, Sumi Iijima. Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst. Appl. Surf. Sci., 2020, 509, 145340.

7. Teppei Ikehara, Zhiyun Noda, Junko Matsuda, Masamichi Nishihara, Akari Hayashi, Kazunari Sasaki. Porous Metal Support for Gas Diffusion Electrode of PEFCs. ECS Trans., 2020, 98, 573.

8. D. Kawachino, M. Yasutake, Z. Noda, J. Matsuda, S. M. Lyth, A. Hayashi, K. Sasaki. Surface-Modified Titanium Fibers as Durable Carbon-Free Platinum Catalyst Supports for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc., 2020, 167, 104513.

9. Masahiro Yasutake, Daiki Kawachino, Zhiyun Noda, Junko Matsuda, Stephen M. Lyth, Kohei Ito, Akari Hayashi,  Kazunari Sasaki. Catalyst-Integrated Gas Diffusion Electrodes for Polymer Electrolyte Membrane Water Electrolysis: Porous Titanium Sheets with Nanostructured TiO2 Surfaces Decorated with Ir Electrocatalysts. J. Electrochem. Soc., 2020, 167, 124523.


用户单位

北海道大学

日本产业技术综合研究所

东北大学(Tohoku University)

韩国科学技术研究院

九州大学

京都大学

大阪大学

山梨大学

东京理科大学

东京工业大学


产品优势
电弧等离子体沉积系统利用通过控制脉冲能量,可以在1.5nm到6nm范围内精确控制纳米颗粒直径,活性好,产量高。多种靶材同时制备可生成新化合物。金属/半导体制备同时控制腔体气氛,可以产生氧化物和氮化物薄膜。高能量等离子体可以沉积碳和相关单质体如非晶碳,纳米钻石,碳纳米管 形成新的纳米颗粒催化剂。
仪企号 
Quantum Design中国子公司
友情链接 

X您尚未登录

会员登录

没有账号?免费注册
 下次自动登录忘记密码?
在线留言
官方微信

仪器网微信服务号

扫码获取最新信息


仪器网官方订阅号

扫码获取最新信息

在线客服

咨询客服

在线客服
工作日:  9:00-18:00
联系客服 企业专属客服
电话客服:  400-822-6768
工作日:  9:00-18:00
订阅商机

仪采招微信公众号

采购信息一键获取海量商机轻松掌控