仪器网(yiqi.com)欢迎您!

| 注册
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

夫兰克-赫兹实验

jiachangkai 2013-12-13 21:51:10 693  浏览
  • 夫兰克-赫兹管内为什么要在极板和栅极间加反向拒斥电压?

参与评论

全部评论(2条)

  • ok夏木円燃w 2013-12-14 00:00:00
    这样能保证阴极发射的热电子不会轻易到达阳极,只有穿过栅极并且动能足够大的电子才能克服这个电场到达阳极。 如果没有这个排斥电压,一个电子只要稍微有动能就能到达阳极,这样也能观察到阳极电流,这样Ip的变化便不明显,实验现象难观察。

    赞(19)

    回复(0)

    评论

  • dq7907 2018-04-21 18:44:22
    编辑词条弗兰克—赫兹实验   1914年,弗兰克(Franck,J.1882—1964)和赫兹在研究中发现电子与原子发生非弹性碰撞时能量的转移是量子化的。他们的精确测定表明,电子与汞原子碰撞时,电子损失的能量严格地保持4.9eV,即汞原子只接收4.9eV的能量。   这个事实直接证明了汞原子具有玻尔所设想的那种“完全确定的、互相分立的能量状态”,是对玻尔的原子量子化模型的diyi个决定性的证据。由于他们的工作对原子物理学的发展起了重要作用,曾共同获得1925年的物理学诺贝尔奖。   在本实验中可观测到电子与汞蒸汽原子碰撞时的能量转移的量子化现象,测量汞原子的diyi激发电位,从而加深对原子能级概念的理解。   【仪器】   弗兰克—赫兹管(简称F—H管)、加热炉、温控装置、F—H管电源组、扫描电源和微电流放大器、微机X—Y记录仪。   F—H管是特别的充汞四极管,它由阴极、diyi栅极、第二栅极及板极组成。为了使F—H管内保持一定的汞蒸气饱和蒸气压,实验时要把F—H管置于控温加热炉内。加热炉的温度由控温装置设定和控制。炉温高时,F—H管内汞的饱和蒸气压高,平均自由程较小,电子碰撞汞原子的概率高,一个电子在两次与汞原子碰撞的间隔内不会因栅极加速电压作用而积累较高的能量。温度低时,管内汞蒸气压较低,平均自由程较大,因而电子在两次碰撞间隔内有可能积累较高的能量,受高能量的电子轰击,就可能引起汞原子电离,使管内出现辉光放电现象。辉光放电会降低管子的使用寿命,实验中要注意防止。   F—H管电源组用来提供F—H管各极所需的工作电压。其中包括灯丝电压UF,直流1V~5V连续可调;diyi栅极电压UG1,直流0~5V连续可调;第二栅极电压UG2?,直流0~15V连续可调。   扫描电源和微电流放大器,提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F—H管的加速电压,供手动测量或函数记录仪测量。微电流放大器用来检测F—H管的板流,其测量范围为10-8A、10-7A、10-6A三挡。   微机X—Y记录仪是基于微机的集数据采集分析和结果显示为一体的仪器。供自动慢扫描测量时,数据采集、图像显示及结果分析用。   【原理】   玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。如果用Em和En分别代表原子的两个定态的能量,则发射或吸收辐射的频率由以下关系决定:   hv=|Em-En|(45—1)   式中:h为普朗克常量。   原子从低能级向高能级跃迁,也可以通过具有一定能量的电子与原子相碰撞进行能量交换来实现。本实验即让电子在真空中与汞蒸气原子相碰撞。设汞原子的基态能量为E1,diyi激发态的能量为E2,从基态跃迁到diyi激发态所需的能量就是E2-E1。初速度为零的电子在电位差为U的加速电场作用下具有能量eU,若eU小于E2-E1这份能量,则电子与汞原子只能发生弹性碰撞,二者之间几乎没有能量转移。当电子的能量eU≥E2-E1时,电子与汞原子就会发生非弹性碰撞,汞原子将从电子的能量中吸收相当于E2-E1的那一份,使自己从基态跃迁到diyi激发态,而多余的部分仍留给电子。设使电子具有E2-E1能量所需加速电场的电位差为U0,则   eU0=E2-E1(45—2)   式中:U0为汞原子的diyi激发电位(或中肯电位),是本实验要测的物理量。   实验方法如图45—1所示,在充汞的F—H管中,电子由热阴极发出,阴极K和第二栅极G2之间的加速电压UG2K?使电子加速。diyi栅极对电子加速起缓冲作用,避免加速电压过高时将阴极损伤。在板极P和G2间加反向拒斥电压UpG2?。当电子通过KG2空间,如果具有较大的能量(≥eUpG2?)就能冲过反向拒斥电场而达到板极形成板流,被微电流计pA检测出来。如果电子在KG2空间因与汞原子碰撞,部分能量给了汞原子,使其激发,本身所剩能量太小,以致通过栅极后不足以克服拒斥电场而折回,通过电流计pA的电流就将显著减小。实验时,使栅极电压UG2K?由零逐渐增加,观测pA表的板流指示,就会得出如图45—2所示Ip~UG2K?关系曲线。它反映了汞原子在KG2空间与电子进行能量交换的情况。当UG2K?逐渐增加时,电子在加速过程中能量也逐渐增大,但电压在初升阶段,大部分电子达不到激发汞原子的动能,与汞原子只是发生弹性碰撞,基本上不损失能量,于是穿过栅极到达板极,形成的板流Ip随UG2K?的增加而增大,如曲线的oa段。当UG2K?接近和达到汞原子的diyi激发电位U0时,电子在栅极附近与汞原子相碰撞,使汞原子获得能量后从基态跃迁到diyi激发态。碰撞使电子损失了大部分动能,即使穿过栅极,也会因不能克服反向拒斥电场而折回栅极。所以Ip显著减小,如曲线的ab段。当UG2K?超过汞原子diyi激发电位,电子在到达栅极以前就可能与汞原子发生非弹性碰撞,然后继续获得加速,到达栅极时积累起穿过拒斥电场的能量而到达板极,使电流回升(曲线的bc段)。直到栅压UG2K?接近二倍汞原子的diyi激发电位(2U0)时,电子在KG2间又会因两次与汞原子碰撞使自身能量降低到不能克服拒斥电场,使板流第二次下降(曲线的cd段)。同理,凡   (45—3)   处,Ip都会下跌,形成规则起伏变化的Ip~UG2K?曲线。而相邻两次板流Ip下降所对应的栅极电压之差,就是汞原子的diyi激发电位U0。   处于diyi激发态的汞原子经历极短时间就会返回基态,这时应有相当于eU0的能量以电磁波的形式辐射出来。由式(45—2)得   eU0=hν=h·c/λ(45—4)   式中:c为真空中的光速;λ为辐射光波的波长。   利用光谱仪从F—H管可以分析出这条波长λ=253.7(nm)的紫外线。   【实验要求】   1)测绘F—H管Ip~UG2K?曲线,确定汞原子的diyi激发电位   (1)加热炉加热控温。将温度计棒插入炉顶小孔,温度计棒上有一固定夹用来调节此棒插入炉中的深度,固定夹的位置已调整好,温度计棒插入小孔即可。温度计棒尾端电缆线连接到“传感器”专用插头上,将此传感器插头插入控温仪后面板专用插座上。接通控温电源,调节控温旋钮,设定加热温度(本实验约180℃),让加热炉升温30min,待温控继电器跳变时(指示灯同时跳变)已达到预定的炉温。   (2)测量F—H管的Ip~UG2K?曲线。实验仪的整体连接可参考图45—3,将电源部分的UF调节电位器、扫描电源部分的“手动调节”电位器旋钮旋至Z小(逆时针方向)。扫描选择置于“手动”挡。微电流放大器量程可置于10-7A或10-8A挡(对充汞管)。待炉温到达预定温度后,接通两台仪器电源。根据提供的F—H管参考工作电压数据,分别调节好UF、UG1、UG2?,预热3~5min。   (a)手动工作方式测量。缓慢调节“手动调节”电位器,增大加速电压,并注意观察微电流放大器出现的峰谷电流信号。加速电压达到50V~60V时约有10个峰出现。在测量过程中,当加速电压加到较大时,若发现电流表突然大幅度量程过载,应立即将加速电压减少到零,然后检查灯丝电压是否偏大,或适当减小灯丝电压(每次减小0.1V~0.2V为宜)再进行一次全过程测量。逐点测量Ip~UG2K?的变化关系,然后,取适当比例在毫米方格纸上作出Ip~UG2K?曲线。从曲线上确定出Ip的各个峰值和谷值所对应的两组UG2K?值,把两组数据分别用逐差法求出汞原子的diyi激发电位U0的两个值再取平均,并与标准值4.9V比较,求出百分差。若在全过程测量中,电流表指示偏小,可适当加大灯丝电压(每次增大0.1V~0.2V为宜)   (b)自动扫描方式测量。将“手动调节”电位器旋到零,函数记录仪先不通电,调节“自动上限”电位器,设定锯齿波加速电压的上限值。可先将电位器逆时针方向旋到Z小,此时输出锯齿波加速电压的上限值约为50V,然后将“扫描选择”开关拨到“自动”位置。当输出锯齿波加速电压时,从电流表观察到峰谷信号。锯齿波扫描电压达到上限值后,会重新回复零,开始一次新的扫描。在数字电压表、电流表上观察到正常的自动扫描及信号后,可采用函数记录仪记录。记录仪的X输入量程可置于5V/cm档,Y输入量程可按电流信号大小来选择,一般可先置于0.1V/cm档。开启记录仪,即可绘出完整的Ip变化曲线。   【注意事项】   (1)实验装置使用220V交流单相电源,电源进线中的地线要接触良好,以防干扰和确保安全。   (2)函数记录仪的X输入负端不能与Y输入的负端连接,也不能与记录仪的地线(⊥)连接,否则要损坏仪器。   (3)实验过程中若产生电离击穿(即电流表严重过载现象)时,要立即将加速电压减少到零。以免损坏管子。   (4)加热炉外壳温度较高,移动时注意用把手,导线也不要靠在炉壁上,以免灼伤和塑料线软化。

    赞(18)

    回复(0)

    评论

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

夫兰克-赫兹实验
夫兰克-赫兹管内为什么要在极板和栅极间加反向拒斥电压?
2013-12-13 21:51:10 693 2
在夫兰克-赫兹实验中,斥电压在实验中的作用是什么?
 
2017-12-30 01:22:56 897 1
夫兰克赫兹实验灯丝电压对I(A)-U(G2K)图像的影响?
括号里面是下标。其实就是电流-阳极至第二栅极电压的图像。希望得到有用的回答,我不要那些复制过来的还没有确切答案的长篇大论。
2013-06-14 07:10:43 907 1
弗朗科赫兹实验思考题
1.在减速电压VG2P=0时。能否记录到Ip的有规则起伏? 2.根据阴极发射电子的速度分布来解释Ip峰顶的形状?若假设所有的电子的初速度都为零,那么Ip在下降时,是否会垂直下降?此时F-H曲线有什么不同
2016-12-01 01:04:40 838 1
雷克兰amn428e是什么级别
 
2018-12-08 22:12:20 217 0
青州雷克兰防化服,防尘服,防护服多少钱
 
2016-11-15 10:58:33 531 1
灯丝电压改变对弗兰克赫兹实验的影响
 
2012-03-22 16:13:22 1792 3
太赫兹无损检测成像系统

太赫兹成像系统现场演示视频

视频中太赫兹成像系统所涉及到的部件:

1, 太赫兹相机    型号MICROXCAM-384I-THZ

太赫兹源参数

ZX频率(1)515GHz282GHz
照明区域(1)114.3mm*152.4mm
THz照明光学元件均匀照明原@515GHz均匀照明源@282GHz
输出功率@1.25mW 典型值@4mW 典型值
电源供给110-240 V AC
110-240 V AC
功率~6-7 W ~6-7 W 
建议的操作温度+20°C to +30°C
+20°C to +30°C
外形尺寸25 cm (H) X 44 cm (W) X 40 cm (L)
重量12.7kG
其他

接近平顶光的矩形均匀照明源

外壳保护

ZL申请中


其他太赫兹成像系统的组件 

>> 太赫兹相机

>> 太赫兹相机镜头

>> 太赫兹照明源

>> 太赫兹光斑扩束器

>> 太赫兹低通滤波器


2020-03-10 14:18:04 309 0
太赫兹光谱检测

太赫兹(THz, 1THz=1012Hz)频段是指频率从十分之几到十几太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。 近年来, 超快激光技术的发展促进了 THz 脉冲产生和探测技术的发展,相关技术及其应用研究也得到蓬勃发展。由于物质的THz 光谱包含丰富的物理和化学信息,对物质结构的探索具有重要意义,同时THz辐射还具有瞬态性、宽带性、相干性和光子能量低等特点,使得 THz 技术在基础研究领域和工业生产及军事应用领域有深远研究价值和重要的应用前景。目前,THz技术在基础领域的研究主要包括研究物质THz波段的光谱响应,对THz光谱进行理论解析, 探索凝聚态物质内部的声子、偶极子动力学过程及其结构性质。在应用领域的研究则涵盖了微电子学、光电子学、通信、天文学、化学、生物学、医学、农学等及由此带动的交叉研究, 如安全检测, 特别是对炸 药、毒品等相关材料的检测研究已成为热点。


THz波的产生分为连续波的THz产生和THz脉冲的 产 生。 产 生 连 续THz波 的 方 法 主 要 有4 种:(1)通 过 FTIR(Fourier Transform Infrared Spectrometer) 使用热辐射源产生, 如汞灯和SiC棒;(2)是通过非线性光混频产生;(3)通过电子振荡辐射产生,如反波管、耿式振荡器及肖特基二极管产生;(4)通过气体激光器、半导体激光器、自由电子激光器等THz激光器直接产生。目前产生THz脉冲常用的方法有光导天线法、光整流法、THz参量振荡器法、空气等离子体法等,其中空气等离子体能产生相对较高强度的THz波而备受关注,此外,还可以用半导体表面产生THz波。

太赫兹光谱用短脉冲太赫兹辐照来探测材料的性质。样品的辐射在MHz频率范围内检测和调制。由一个或多个激光器驱动的光学系统产生可以用锁相放大器测量和检测的斩波的THz脉冲。HF2LI锁相放大器用于太赫兹光谱仪器的连接图如下图一所示。



                                                                    

                                                          图一 HF2LI锁相放大器连接到THz光谱仪系统

电光取样技术


电光取样测量技术基于线性电光效应:当THz脉冲通过电光晶体时,会发生电光效应,从而影响探测(取样) 脉冲在晶体中的传播。 

当探测脉冲和THz脉冲同时通过电光晶体时,THz脉冲电场会导致晶体的折射率发生各向异性的改变,致使探测脉冲的偏振态发生变化。 调整探测脉冲和THz脉冲之间的时间延迟,检测探测光在晶体中发生的偏振变化就可以得到THz脉冲电场的时域波形。

自由空间电光取样THz探测原理如下图二所示。 图中的激光器为飞秒激光器,它所发出的飞秒激光脉冲经分束器之后,分为泵浦脉冲和探测脉冲。 泵浦脉冲用来激发THz发射极使其产生THz脉冲,然后该脉冲被离轴抛物面镜准直聚焦,经半透镜照射到电光晶体之上,由此改变电光晶体的折射率椭球。 当线偏振的探测脉冲在晶体内与THz光束共线传播时,其相位会被调制。 由于电光晶体的折射率会被THz脉冲电场改变,所以探测光经过电光晶体时,其偏振状态将会由线偏振转变为椭圆偏振,再经偏振分束镜(这里常用的是沃拉斯通(Wollaston) 棱镜) 分为 s 偏振和 p偏振两束,而这两束光的光强差则正比于THz电场。 使用差分探测器可以将这两束光的光强差转换为电流差,从而探测到THz电场随时间变化的时域光谱。 利用机械电动延迟线可以改变THz脉冲和探测脉冲的时间延迟,通过扫描这个时间延迟可得到THz电场的时域波形。 为了提高灵敏度和压缩背景噪声,可以采用机械斩波器来调制泵浦光,而后利用锁相探测技术,即可获得THz电场振幅和相位的信息。



                                                          图二  电光探测技术的太赫兹光谱系统

时域太赫兹光谱技术


THz- TDS系统是基于相干探测技术的太赫 兹产生与探测系统, 能够同时获得太赫兹脉冲的振幅信息和相位信息, 通过对时间波形进行傅立叶变换, 能直接得到样品的吸收系数和折射率、透射率等光学参数.太赫兹时域光谱有很高的探测信噪比和较宽的探测带宽, 探测灵敏度很高, 可以广泛应用于多种样品的探测.
THz- TDS 系统可分为透射式、 反射式、 差分式、 椭偏式等, 其中Z常见的为透射式和反射式THz- TDS 系统.典型的 THz- TDS 系统如下图三所示,它主要由飞秒激光器、 太赫兹辐射产生装置及相应的探测装置, 以及时间延迟控制系统和数据采集与信号处理系统组成.目前, 在 THz- TDS 技术中常用来产生太赫兹脉冲的方法主要有 3 种: 光导天线、半导体表面辐射和光整流, 而相应的探测方法也主要有 3 种: 热辐射计、光导开关和电光取样



                                                              图三  时域太赫兹光谱系统


2019-08-19 17:22:51 432 0
数字频率计逻辑电路设计测量范围1赫兹到9999赫兹怎么办
 
2017-08-31 04:40:32 392 1
太赫兹相机用于测量光斑,校准太赫兹光路系统

案例1,太赫兹相机用于测量太赫兹光电导天线光斑

太赫兹辐射的产生条件:Ti:Sapphire振荡器,输出功率100mW, 800nm,驱动光电导天线(太赫兹相机RIGI

案例2, 太赫兹相机用于测量180GHz光斑

      

Terasense 180GHz亚太赫兹辐射源(太赫兹相机RIGI

案例3,太赫兹相机用于Menlosystems的太赫兹时域光谱仪系统中


太赫兹相机用于测量THz-TDS中的光斑,辐射源为光电导天线 (太赫兹相机RIGI)

案例4,太赫兹相机用于测量ZnTe晶体产生的太赫兹脉冲


产生条件:800nm, 200uJ,飞秒激光激发碲化锌晶体(太赫兹相机RIGI

案列5,太赫兹相机用于测量铌酸锂晶体产生的太赫兹脉冲



产生条件:800nm, 1KHz,飞秒激光激发铌酸锂晶体(波前倾斜)(太赫兹相机RIGI

案列6,太赫兹相机用于测量CO2太赫兹激光器的光斑


CO2太赫兹激光器(太赫兹相机RIGI


2020-03-10 14:18:04 483 0
热成像仪的赫兹是什么意思
 
2012-04-11 16:22:54 571 4
灯丝电压,拒斥电压的选取对弗兰克赫兹实验有什么影响,为什么
 
2009-10-24 11:23:50 1701 2
求哈夫曼编码器
从终端读入一段字符集,系统自动统计出字符的个数n以及各个字符出现的次数w作为权值,建立哈夫曼树,并将哈夫曼树以凹入表示法的形式显示在屏幕上。利用已建好的哈夫曼树对字符进行编码,并将该段文字的编码存人一个文件code中,然后输出这段编码。
2016-05-02 13:37:40 328 1
兰尼金属
兰尼镍,兰尼铜中的兰尼是什么意思?
2009-08-03 08:59:24 312 2
从地理角度分析俄罗斯通往欧洲的天然气管道经过兰克的原因
 
2014-04-25 02:15:49 372 3
太赫兹近场探针问题答疑

太赫兹近场探针问题答疑

所有关于我们太赫兹近场探针的产品的问题,如我们的TeraSpike太赫兹微探针的性能或它集成到您的系统的问题都列在这里。

1.   使用TeraSpike太赫兹微探针需要哪种类型的激光?

基本上,大多数λ<860 nm的飞秒脉冲振荡器系统都与我们的微探针兼容。TeraSpike太赫兹微探针针对飞秒脉冲激发进行了优化,其ZX波长在800nm左右,平均光功率在几兆瓦的情况下,重复频率为80MHz。要评估微探针与你的特定激光系统的兼容性,请随时与我们联系。

2.  TeraSpike是基于AFM的探针吗?

不,TeraSpike太赫兹探针填补了衍射极限毫米级分辨率和基于AFM纳米级分辨率系统之间的空白。微米级分辨率是通过使用大型平移台和(可选)使用光学表面距离监控来实现的, 这有助于使系统成本保持较低水平,并可以进行大规模区域的测量。

3.  微探针发出的时域信号是什么样子的?

您可以在我们的手册中找到一些示例性数据(2MB PDF)。 探头接收到的时域信号形式还取决于所施加的发射器和激励脉冲持续时间,这可能因系统而异。

4.   我已经拥有一套自由空间THz TDS系统,是否可以集成TeraSpike微探针进行近场测量?

将TeraSpike太赫兹微探针集成到现有TDS系统中通常非常简单,特别是如果系统包括光电导检测器:在这种情况下,大多数必需的组件应该已经可用。利用我们的子系统组件,可以进一步减少系统集成的工作量。这些模块包含所需的固定装置,反射镜,镜台,微型探头安装座和聚焦透镜。

5.  我们想测量对于太赫兹辐射不透明的样品。 是否可以进行反射测量?

反射模式下的THz近场测量原则上可以使用TeraSpike微探针,但是与传输模式相比存在一些限制。例如,在垂直入射的情况下,由于THz激发光束被探头掩蔽,使得探头不能垂直地对准样品表面进行THz激发。所需的斜交THz激发光束(或探头)对准使得信号说明比传输模式配置要求更高。

6.  要正确操作TeraSpike太赫兹微探针,要具备哪些条件?

低质量的电缆或电流放大器会严重影响微探头的性能,我们建议使用我们已证实的附属组件和子系统。如果您不确定您的设备是否足以操作TeraSpike太赫兹微探针,请与我们联系。

7.  你的TeraSpike的动态范围是什么?

有效的动态范围取决于您的测量方案(例如ECOPS或锁相)、使用的发射器、集成时间和设置的其他因素。在TeraSpike TD-800-X-HS中,我们通常在短锁相集成时间内使用30dB的场振幅信噪比。

8.       也会出售完整的THz近场测量装置吗?

是的。请看我们的扫描系统部分。

9.       为什么主面包板垂直安装在你的子系统D-B2?是否有一个特别的原因导致激光束的垂直排列而不是水平排列?

选择子系统的这种垂直对齐方式是为了允许样本的水平对齐。由于重力对您不利,这有助于将样品放置到装置中。同样,通过这种对齐方式,光栅扫描中平移阶段的整合通常也比较简单。这种设置方案还有其他优点,因为您可以获得更多的宝贵空间来进行进一步的扩展,并且所有重要组件都在可以触及的范围内。


太赫兹近场探针TeraSpike操作指南

有关处理和测量设置的常见问题。

1.       你推荐THz激发光束、样品表面和TeraSpike微探针的哪个方向?

为了获得更高的分辨率,我们建议将微探针悬臂和THz激发光束在垂直方向上对准样品表面根据我们下载部分的应用说明,建议从悬臂的非金属化一侧进行TeraSpike的光激发。

2.       样品与TeraSpike太赫兹微探针之间的距离应该是多少?

微型探针针尖与被测设备之间的距离通常应为大约在目标分辨率范围内。

3.       如何在扫描过程中调整探头到样品的距离并保持恒定?

可以很容易地手动调整的高度(使用集成在子系统D-B1或D-B2中的手动平移台),由于微探针悬臂的柔韧性,可以使与样品表面轻微接触,而不会损坏样品或探针。此过程应使用带放大物镜的摄像机进行视觉控制,这样还可以调整Z终样品的倾斜度,并调整定义的微探针到样品的距离。另一个简练的解决方案是将单独的距离传感器和3D平移台集成在一起,以在扫描过程中实现受控且恒定的样品/探针距离。

4.       关于光学探针束与微探针的对准,应该注意什么?

在测量期间,探测束必须保持聚焦并稳定在微探针的光电开关上。对于探针束对准,应使用施加的偏置电压下的光电流作为反馈信号。为了简化微探针与系统的集成,我们提供了预先对准的子系统模块D-B1和D-B2。

5.       如何将微探针连接到测量设备?

微型探针配有SMP连接器,推荐的TS电缆链接至SMA或BNC插头,该插头可直接与我们的电流放大器或您自己的设备连接。

6.       如何在扫描过程中确保探针激光束保持固定在微探针光电开关上?

我们建议移动样品并保持微探针的位置固定,在这种情况下,不需要连续重新对准焦点。 为了将焦点对准微探针,可以将1V偏置电压下的光电流用作调整反馈。CCD显微镜摄像机有助于直观地检查微探针的光斑直径和位置。

7.       微探针悬臂中是否存在用于光学探针束激发的shou选面?

我们的应用说明(PDF文件)中给出了建议的微探针方向和激光束激发角的范围。给定激发功率的Z大光电流是从悬臂背面获得的,也可以从悬臂的顶侧(搭载电极结构)进行光激发,但是会导致光电流降低。

8.       微型探针对振动有多敏感?我需要隔离振动吗?

即使在很短的探针到样品的距离下,具有标准隔振功能的标准光学平台通常也足以进行不失真的测量。但是,如果可能,请勿将振动源直接放在光学平台上。只要与微探针之间有足够的距离,机械斩波器通常就不重要。

9.       我们希望在测量过程中保持样品固定,可以移动微探针吗?

原则上是可以的,但是光激发光束当然需要跟随(例如,通过使用光纤)。除非样品非常大,否则通常是移动样品并将微探针保持在固定位置是较稳定且具成本效益的解决方案。


相关产品

太赫兹近场探针

太赫兹光电导天线

光纤耦合太赫兹光电导天线

无偏压太赫兹光电导天线



2020-03-20 09:04:43 372 0
太赫兹偏振片常见使用问题

我们很高兴回答您有关太赫兹线栅偏振片功能和使用的任何问题。首先我们在下面列出客户可能遇到的一些典型问题:

1.      太赫兹线栅偏振片的主要用途是什么?

       独立式(Free-standing)太赫兹线栅偏振片用作毫米和亚毫米波长辐射(例如在远红外波长或太赫兹频率范围内)的低损耗偏振元件。典型的应用包括用作中红外至毫米波长太赫兹辐射的线性偏振片,偏振干涉仪中的分束器或分光器,长波长辐射的耦合器以及可变衰减器或可变反射器。请注意,由于它们属于偏振元件,因此用作衰减器,反射器或耦合器时会在系统中优先引入偏振。


2.      什么是独立式(free-standing)太赫兹线栅偏振片?

        独立式(free-standing)线栅太赫兹偏振片由一排平行的细导线(直径通常为5-50微米)组成,并由框架围绕圆周固定支撑。此类线栅阵列将反射电场偏振平行于导线的入辐射,并透射电场偏振垂直于导线

的辐射。以此方式,线栅在透射和反射中均作为偏振元件。

3.       独立式(free-standing)太赫兹偏振片工作原理是什么?

      该问题已在文献中得到了彻底解决,有关更详细的答案,请参考Hecht(1987)。独立式太赫兹线栅偏振片工作的基本原理是基于入射的电磁辐射如何与线栅相互作用,这取决于相对于栅取向的电场偏振平

面。对于电场偏振平行于线栅的导线元件的情况,入射辐射将导致导线中的自由电子沿其长度振荡。这种相互作用导致通过焦耳热的再辐射和能量的一些消散,正向的再辐射波抵消了透射波,反方向的再辐射

表现为反射辐射。以此方式,入射波的平行分量被从透射的辐射中剥离,并且表现为反射波。在导线直径较小的情况下,鉴于无法使自由电子沿该方向流动,入射辐射的正交偏振分量不会以相同的方式与导线栅格相互作用。因此,在没有任何反射的情况下,正交偏振分量被栅格完全透射。为了使该过程有效的工作,导线之间的空间必须小于辐射的波长。这样,线距限制了太赫兹线栅偏振片的较低波长性能,并且太赫兹线栅偏振片的性能存在一定的波长依赖性。

4.       为何钨丝用作太赫兹线栅偏振片?

在商业上可获得的材料中,钨丝被认为可为太赫兹线栅偏振片提供有利的特点,它主要具有的是:

-高抗拉强度,可将导线牢固地固定在整个支撑框架上;

-良好的导电性,这是线栅偏振选择性的必要先决条件;

-优异的耐腐蚀性,可使偏振片在可接受的时间内继续工作。



2020-03-10 13:49:59 461 0
格力空调1赫兹变频是什么意思?
在1赫兹的效率应不好,实际上没有意义。有意义的技术限界在4-6赫兹。
2011-10-18 02:05:04 561 6
什么是 席夫碱配体
 
2016-12-01 11:26:43 293 1

10月突出贡献榜

推荐主页

最新话题