仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

种子萌发过程-低场核磁共振法

苏州纽迈分析仪器 2022-10-10 22:57:07 206  浏览
  • 种子萌发过程-低场核磁共振法

    种子萌发过程

    种子萌发过程分为4个步骤,包括吸胀,水与酶活化,种胚突破种皮,另外还有长成幼苗。

    1、吸胀  :种子在进行发芽生长时,当将种子浸泡在水中或是种子掉落到潮湿的土壤中,种子里面亲水性物质就会吸引水分子,会使种子的体积迅速增大,吸胀刚开始时,吸水会比较的快,之后会逐渐的变慢。吸胀的结果会使种皮变软或是破裂,种皮对气体等的通透性就会增加,就会促进萌发。

    2、水合与酶的活化  :当种子吸水阶段结束后,种子的细胞壁就会与原生质发生水合,种子里的各种酶,也会开始活化,呼吸和代谢作用就会急剧的增加。

    3、种胚突破种皮  :种胚会突破种皮,然后体积增大,大众多数种子会先长出胚根,然后再长出胚芽。

    4、长成幼苗  :种子长出胚根、胚芽后会逐渐的长出根、茎、叶,然后形成幼苗。

    种子萌发需要的条件

    1、适当的水分:一是种子萌发过程中,贮存在子叶或胚乳内营养物质的转运及细胞分裂的进行都需要水分;二是不同植物的种子萌发时需水量不同,一般豆科种子(如菜豆)萌发比禾本科种子(小麦)需水多;三是农业生产中,满足种子萌发对水的需求可进行浸种。

    2、充足的空气:主要是氧气。在种子吸收充足的水分后,只有氧气充分,贮存在胚和胚乳中的营养物质才能够通过呼吸作用产生中间产物和能量,满足萌发所需。一般种子在空气中含氧量10%以上才能正常萌发,而且含脂肪多的种子比含淀粉多的种子需要的氧气更多;含氧量下降到5%以下时,多数种子不能萌发。

    3、适宜的温度:适宜的温度是生命活动正常进行的必要条件,温度过高、过低种子不能正常萌发。

     

    种子萌发过程所需水分探究-低场核磁法

    水分是种子生理代谢活动中必需的反应底物和介质,种子萌发整个过程都与其内部水分的含量以及分布密切相关,水分过多或过少都会对种子萌发及生长产生不利影响,因此,萌发期间种子的吸水及水分变化规律对其发芽具有重要的指导作用。

    目前,测定种子中的水分主要是通过烘干或者解剖种子观察其结构来对水分的变化进行分析,二者均是破坏性的,不能对同一批种子水分变化进行连续准确的测定,且前者也只能获得含水量的信息并不能得到内部水分变化的信息。

    核磁共振技术( Nuclear magnetic resonance,NMR) 具有无损伤、非侵入的技术优势,在种子水分可视化检测方面具有巨大潜力,能够从微观水平揭示种子内部水分含量和分布的变化规律。有助于准确确定种子的发芽、出苗能力,从而为奠定作物良好的生长状态以及寻求适当的抗旱对策提供依据。

    低场核磁共振仪器

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

种子萌发过程-低场核磁共振法

种子萌发过程-低场核磁共振法

种子萌发过程

种子萌发过程分为4个步骤,包括吸胀,水与酶活化,种胚突破种皮,另外还有长成幼苗。

1、吸胀  :种子在进行发芽生长时,当将种子浸泡在水中或是种子掉落到潮湿的土壤中,种子里面亲水性物质就会吸引水分子,会使种子的体积迅速增大,吸胀刚开始时,吸水会比较的快,之后会逐渐的变慢。吸胀的结果会使种皮变软或是破裂,种皮对气体等的通透性就会增加,就会促进萌发。

2、水合与酶的活化  :当种子吸水阶段结束后,种子的细胞壁就会与原生质发生水合,种子里的各种酶,也会开始活化,呼吸和代谢作用就会急剧的增加。

3、种胚突破种皮  :种胚会突破种皮,然后体积增大,大众多数种子会先长出胚根,然后再长出胚芽。

4、长成幼苗  :种子长出胚根、胚芽后会逐渐的长出根、茎、叶,然后形成幼苗。

种子萌发需要的条件

1、适当的水分:一是种子萌发过程中,贮存在子叶或胚乳内营养物质的转运及细胞分裂的进行都需要水分;二是不同植物的种子萌发时需水量不同,一般豆科种子(如菜豆)萌发比禾本科种子(小麦)需水多;三是农业生产中,满足种子萌发对水的需求可进行浸种。

2、充足的空气:主要是氧气。在种子吸收充足的水分后,只有氧气充分,贮存在胚和胚乳中的营养物质才能够通过呼吸作用产生中间产物和能量,满足萌发所需。一般种子在空气中含氧量10%以上才能正常萌发,而且含脂肪多的种子比含淀粉多的种子需要的氧气更多;含氧量下降到5%以下时,多数种子不能萌发。

3、适宜的温度:适宜的温度是生命活动正常进行的必要条件,温度过高、过低种子不能正常萌发。

 

种子萌发过程所需水分探究-低场核磁法

水分是种子生理代谢活动中必需的反应底物和介质,种子萌发整个过程都与其内部水分的含量以及分布密切相关,水分过多或过少都会对种子萌发及生长产生不利影响,因此,萌发期间种子的吸水及水分变化规律对其发芽具有重要的指导作用。

目前,测定种子中的水分主要是通过烘干或者解剖种子观察其结构来对水分的变化进行分析,二者均是破坏性的,不能对同一批种子水分变化进行连续准确的测定,且前者也只能获得含水量的信息并不能得到内部水分变化的信息。

核磁共振技术( Nuclear magnetic resonance,NMR) 具有无损伤、非侵入的技术优势,在种子水分可视化检测方面具有巨大潜力,能够从微观水平揭示种子内部水分含量和分布的变化规律。有助于准确确定种子的发芽、出苗能力,从而为奠定作物良好的生长状态以及寻求适当的抗旱对策提供依据。

低场核磁共振仪器

2022-10-10 22:57:07 206 0
低场核磁共振法研究胡萝卜干燥过程的水分迁移

低场核磁共振法研究胡萝卜干燥过程的水分迁移

实验目的

应用低场核磁共振技术检测的胡萝卜在不同条件下红外干燥过程中水分相态的变化。


实验材料

不同条件下干燥不同时间的胡萝卜。


实验仪器

PQ001低场核磁共振分析仪,线圈直径为25mm,磁体温度为32℃。


样品制备

共有如表1所示15种不同处理或不同干燥条件的样品,将样品置于红外干燥设备中干燥不同时间后,取出,称取一定质量放入25mm探头线圈进行T2弛豫分析检测。



实验参数

T2测试: TR=3000ms, TE=0.6ms, NECH=8000。


实验方法

T2测试:使用纽迈低场核磁共振分析测量软件及CPMG序列采集样品信号,并进行反演。


分析及结果

不同切片厚度胡萝卜的T2弛豫分析

胡萝卜样品干燥不同时间的T2弛豫图谱如下所示:

图1 胡萝卜干燥不同时间的T2弛豫图谱


由图1可知,胡萝卜在干燥过程中产生了3~4个峰,根据峰出现的时间先后分别命名为T21峰、T22峰、T23峰与T24峰,其中T21峰与T22峰(0.1~10ms)为结合水峰,T23峰(10~100ms)为不易流动水峰,T24峰(>100ms)为自由水峰。在干燥初期或前期,样品产生了三个峰,继续干燥,样品产生了四个峰,峰个数改变可能是干燥程度的加深,样品内部结构发生变化,一部分结合水发生迁移,使得结合水峰个数为两个。


结论:

不同切片厚度、不同物料厚度、不同干燥温度、不同辐射距离及不同功率密度对胡萝卜干燥过程的水分相态的迁移及变化存在不同程度的影响和差异,具体变化详见实验报告正文。


2022-01-19 18:16:28 266 0
自愈合胶研究(低场核磁共振法)

自愈合胶研究(低场核磁共振法)

橡胶材料在长期使用过程中受到外界的力、光、热、臭氧等的作用会产生裂纹,影响其使用寿命。自愈合胶材料能对橡胶材料的裂纹进行修复,使其恢复原有的力学性能,对于延长橡胶材料的使用寿命具有重要意义。自愈合胶材料有许多潜在用途,包括日常用品,如生物医学和食品包装、压力和危险液体容器、轮胎和充气组件等,以及一些特殊应用场合,特别是在航空航天领域,通过使用自愈合胶可以有效提高材料的稳定性和使用寿命,在传感器和人造皮肤方面其也具有潜在的应用前景。

自愈合胶分类

按照自愈合原理,可将自愈合胶材料分为氢键交联型、可逆化学键交联型和离子交联型的自愈合胶。

氢键交联型:制备氢键交联型自愈合胶的关键是在分子中引入能够通过多个氢键强烈缔合的官能团,并且在保持定向氢键作用的同时不会产生结晶。

可逆化学键交联型:通过可逆化学键使橡胶交联是一种制备自愈合胶的有效方法。

离子交联型:离子键作为一种可逆化学键,可利用其可逆性构建以离子交联为主的可逆超分子橡胶,也是制备自愈合胶的一种可行方法。

低场核磁共振技术用于橡胶交联研究:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

纽迈VTMR系列变温核磁共振分析仪

分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。核磁法利用对应的分析模型来评价材料的交联密度。

低场核磁共振法可用于研究:

1、活化能的测定;

2、天然橡胶交联密度测试;

3、硫含量对橡胶交联的影响;

4、促进剂种类和用量对橡胶交联的影响

5、氧化锌和硬脂酸含量对橡胶交联的影响

6、橡胶硫化过程中对应的磁共振模型参数的演化

7、混炼时间对磁共振模型参数的影响

8、纳米黏土含量对橡胶交联的影响


其他资料:

2023-01-29 21:01:09 130 0
自愈合橡胶研究(低场核磁共振法)

自愈合橡胶研究(低场核磁共振法)

橡胶材料在长期使用过程中受到外界的力、光、热、臭氧等的作用会产生裂纹,影响其使用寿命。自愈合橡胶材料能对橡胶材料的裂纹进行修复,使其恢复原有的力学性能,对于延长橡胶材料的使用寿命具有重要意义。自愈合橡胶材料有许多潜在用途,包括日常用品,如生物医学和食品包装、压力和危险液体容器、轮胎和充气组件等,以及一些特殊应用场合,特别是在航空航天领域,通过使用自愈合橡胶可以有效提高材料的稳定性和使用寿命,在传感器和人造皮肤方面其也具有潜在的应用前景。

自愈合橡胶分类

按照自愈合原理,可将自愈合橡胶材料分为氢键交联型、可逆化学键交联型和离子交联型的自愈合橡胶。

氢键交联型:制备氢键交联型自愈合橡胶的关键是在分子中引入能够通过多个氢键强烈缔合的官能团,并且在保持定向氢键作用的同时不会产生结晶。

可逆化学键交联型:通过可逆化学键使橡胶交联是一种制备自愈合橡胶的有效方法。

离子交联型:离子键作为一种可逆化学键,可利用其可逆性构建以离子交联为主的可逆超分子橡胶,也是制备自愈合橡胶的一种可行方法。

低场核磁共振技术用于橡胶交联研究:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

纽迈VTMR系列变温核磁共振分析仪

分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。核磁法利用对应的分析模型来评价材料的交联密度。

低场核磁共振法可用于研究:

1、活化能的测定;

2、天然橡胶交联密度测试;

3、硫含量对橡胶交联的影响;

4、促进剂种类和用量对橡胶交联的影响

5、氧化锌和硬脂酸含量对橡胶交联的影响

6、橡胶硫化过程中对应的磁共振模型参数的演化

7、混炼时间对磁共振模型参数的影响

8、纳米黏土含量对橡胶交联的影响


其他资料:

2023-01-18 17:52:10 109 0
巧克力脂肪含量的测定-低场核磁共振法

巧克力脂肪含量的测定-低场核磁共振法

巧克力是一种高热量食品,很多人都喜欢吃巧克力,其中蛋白质含量偏低,脂肪含量偏高。虽然巧克力有不少好处,但是因为它的高热量可导致肥胖。

巧克力中脂肪含量是衡量其质量的重要理化指标。目前,对于巧克力脂防含量测定的具体方法没有明确的规定。不同的检验方法得到的检验结果存在差异。常用的巧克力脂防含量的测定方法有:索氏抽提法、酸水解法、低场核磁共振法等。长期的实验工证明索氏抽提法和酸水解法对于巧克力制品中脂肪含量测定的结果与真实值相比都不甚理想。

索氏抽提法巧克力脂肪含量的测定:

索氏抽提法主要是用乙迷或石油醚等有机溶剂抽提后,蒸去溶剂所得的物质,除脂防外还含有色素、挥发油、蜡等物质,称为粗脂肪。此外,索氏抽提法不适用于含糖量过高的食品,因为,食品中的糖分会随着乙迷等溶剂被抽提到接收瓶中,致使测定值偏高。而巧克力制品正是含糖量较高的食品,在用索氏抽提法时会导致蕞后结果偏离真实值。一个重要的原因是巧克力制品中含有奶粉,其中的乳脂肪在抽提时不能被乙迷所溶解,这又造成结果的误差。

酸水解法巧克力脂肪含量的测定:

酸水解法适用于加工食品和结块的不溶性样品,以及不易除去水分的样品。其利用强酸破坏蛋白质,纤维素等,使脂肪游离出来,再用乙迷提取。选用此法时,强酸可以打破巧克力制品中乳脂球膜,使乳脂肪游离出来,称之为总脂肪。但是,由于巧克力制品中含糖量较高,同样也会影响检验结果。另外,酸水解法由于人为主观因素会带来“在吸取醚层时,因界面不清晰,导致吸得不完荃或吸出黑色水分的结果”,在蕞后挥散乙迷烘干后的蕞后测定值或多或少的偏离真实值,影响检验的准确度。

低场核磁共振法巧克力脂肪含量的测定:

低场核磁法是基于巧克力产品中脂肪含量与采集到的NMR信号强度成正比,通过将每克样品的NMR信号对应于脂肪含量进行定标,即可定量未知样品中的脂肪含量。

使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的固相和液相(基质和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时固相的信号已经衰减为0,A2仅为油的信号,A2与样品的脂肪量成正比,从而进行定量测量。

使用3~6个已知脂肪含量的样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。

推荐仪器:PQ001系列低场核磁共振分析仪

2022-12-19 16:12:22 167 0
低场核磁共振法用于淀粉玻璃化转变温度研究

低场核磁共振法用于淀粉玻璃化转变温度研究

淀粉不仅是食品中的重要的组成成分,而且也是有用的食品工业原料,应用用途十分的广泛。大家都知道,淀粉由直链淀粉和支链淀粉组成,直链淀粉为一条直链的结构,分子量较小,支链淀粉是高度分支,分子量通常较高。由于来自不同种植物的淀粉在结构,组成和分子状态方面的差异,来自不同的来源的淀粉具备各自的使用功能。

食品的玻璃化转变可能会引起食品的货架寿命和质构等的改变,已成为当今的研究热点。玻璃化转变温度的这个概念目前被广泛的应用在食品科学的领域当中。玻璃化转变是一种二级相变,物质不会放出潜热,不发生相变,他的宏观上在物质的物理、电学、热及力学等其他性质上,表现出变化或者不连续性。当食品处在玻璃态时,食品的分子分散的速率就会减慢,产品的品质就会提高,然而,当食品发生了玻璃化转变之后,它的理化性质就会发生明显的改变。淀粉的玻璃化转变对机械性能的影响很大,如引起淀粉的质构特性和产品老化等重要影响。因此,研究淀粉的玻璃化转变温度是非常重要的。

聚合物在比较低的温度下,分子的热运动所需要的能量就很低,只有分子中的链节、支链等比较小的运动单元可以运动,而链段和分子链处于被冻结的状态,聚合物在外界作用下只能发生微小的形变,这个时候聚合物表现出来的力学性质和玻璃相似,所以把这种状态叫做玻璃态。聚合物发生了玻璃化转变时的温度称为玻璃化转变温度(Tg)。当食品处在玻璃态的时候,受扩散控制的食品的品质变化的反应就会变得非常的缓慢,有的甚至不会发生。这时的食品的各个方面的性质就会非常的稳定,对于食品的保存和新鲜程度等品质的保持就十分有利。大部分的谷物类食品是以淀粉为原料的,如小吃、焙烤食品等。面包在储藏的过程会发生老化(硬化),严重影响面包的品质,淀粉结晶就是影响面包老化的重要因素。当储藏温度低于Tg时,淀粉就不会发生结晶,所以将面包在玻璃态时储藏,对yi制面包老化很有效。食品中的玻璃化转变会影响食品的货架寿命和质构等。

低场核磁共振法测定玻璃化转变温度:

NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃芳位、定量的研究样品。

玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。

当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。

T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其zui低点,即为相转变点,所对应温度为Tg。

2022-11-25 17:32:20 173 0
短纤维含油率如何测量?低场核磁共振法

短纤维含油率如何测量?低场核磁共振法

为什么要测定短纤维中的含油率?

纤维所上的油剂通常是作润滑剂或抗静电剂使用的,但有时它也被用作纖维的杀菌剂、阻燃剂、着色剂等化学试剂的载体。油剂含量也是一个重要的质控参数,它直接决定着纤维是否能满足其使用要求。然而,含油率不匀的情况是化纤生产过程中发生率较高的问题。含油率低的纤维容易产生静电现象,含油率高的纤维则容易产生黏缠现象,两种情况都会严重影响纺织加工的正常进行。因此,准确地测定纤维的含油率对准确把握和控制上油量具有非常重要的意义。

短纤维含油率的测试方法有哪些?

现行标准GB/T 6504- -2008 《化学纤维含油率试验方法》规定的试验方法有萃取法(以下称为标准萃取法)、中性皂液洗涤法、光折射率法和核磁共振法。除此之外,中石化企业为了方便生产,开发了几种新的试验方法,包括快速萃取法”、原子吸收法、电导法、蒸馏水振荡法、紫外光谱法等,其方法是针对某类产品使用的试验方法。

短纤维含油率测试方法的原理是什么?

1、标准萃取法:标准萃取法的原理是利用油剂可溶解于特定的有机溶剂,将适当的有机溶剂通过脂肪抽出器把试样中的油剂萃取出来,再将溶剂蒸干,称量残留油剂的质量及试样质量,计算得出试样的含油率。

2、中性皂液洗涤法:中性皂液洗涤法的原理是利用皂液与油剂相亲和的性质,在洗涤力的作用下,使试样上的油剂转移到皂液中,再根据试样洗涤前、后的质量变化,计算试样的含油率。

3、光折射率法:光折射率法的原理是利用全反射临界角的测定方法来测定未知物质的折光率,并定量地分析溶液中的某些成分,检验物质的纯度””。

4:低场核磁共振法:核磁共振法的原理是利用核磁共振波谱法向纤维样品发射脉冲磁场,当磁场取消时,检测试样的回应磁信号,由于纤维发出的信号比油剂发出的信号衰减得快,从两者的差异上可换算出试样的含油率。

低场核磁纤维含油率分析仪

低场核磁共振法测定短纤维含油率的优势在哪里?

传统纤维含油率检测方法大都采用萃取法;存在检测时间长,检测结果滞后,需要使用有害试剂,人工成本高,有经验误差等局限性。纽迈针对传统方法的缺陷,开发了利用低场核磁共振测试纤维含油率的方法。

性能特点:快速、精确、无损

仅需30S–快速响应,满足大样品测试需求,为在线实时质量控制提供可能

国标方法–核磁共振法保证测量精确,无损、环保,可进行纵向实验。

时域核磁共振分析仪软件界面

2022-08-31 23:21:24 160 0
低场核磁共振法用于聚合物的分子动力学研究-交联密度、老化过程

低场核磁共振法用于聚合物的分子动力学研究-交联密度、老化过程、填充剂


在工业生产过程中和研究型实验室里需要有一种快速、有效、简单实用的方法来评价交联密度。低场核磁法非常适合在生产领域中对交联密度变化点检测,核磁法简单易用,可以作为聚合物生产过程中质量控制的工具。同时低场核磁对聚合物的分子动力学非常敏感,可以用于多尺度的分子动力学研究,为聚合物改性、配方、老化、性能评价提供可靠数据,是一款科研利器。


低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。



分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。



低场核磁共振法可用于研究:

1、活化能的测定;

2、天然橡胶交联密度测试;

3、硫含量对橡胶交联的影响;

4、促进剂种类和用量对橡胶交联的影响

5、氧化锌和硬脂酸含量对橡胶交联的影响

6、橡胶硫化过程中对应的磁共振模型参数的演化

7、混炼时间对磁共振模型参数的影响

8、纳米黏土含量对橡胶交联的影响

变温核磁共振分析仪


2022-02-09 15:38:29 258 0
低场核磁共振研究甲烷与co2吸附过程

低场核磁共振研究甲烷与co2吸附过程

注气驱替煤层瓦斯技术是提高煤层气采收率、井下瓦斯强化抽采消突等方面的重要措施之一,已在美国、日本、中国等国家开展了相关试验。它在创造经济价值、保证矿山安全的同时还能封存C02等温室气体,具有巨大的应用价值。

科学家研究了CH4,N2,CO2等气体在煤层中的竞争吸附和驱替行为。强吸附性气体浓度越大,竞争吸附优势越明显,吸附总量越大,强吸附性气体能驱替弱吸附性气体。低场核磁共振技术可以从分子间作用力角度阐明co2吸附过程

先前的诸多研究主要是竞争吸附和驱替行为的蕞终状态进行研究和评价,而对整个竞争吸附过程和驱替过程的演化规律的定量描述以及现象背后的微观机制研究相对较少。

可以利用低场核磁共振技术快速、无损、信息量丰富等的特点,在明确CH4的NMR信号特征之后,通过测试CH4与CO2,N2在煤样中相互作用过程的低场核磁共振信号,用核磁共振的方法阐明各气体间的竞争吸附过程。

低场核磁共振基本原理

低场核磁共振技术是指含H原子核的流体在受到外部磁场强度改变后.其自旋磁矩将发生改变,从而产生核磁共振信号,通常选用横向弛豫时间T2作为表征信号,弛豫时间是由体弛豫、表面弛豫和扩散弛像共同作用的结果,当样品在匀强磁场中,且采集短回波时间较小时,表面弛豫起主要作用。

为了研究CO2,CH4,N2等气体对煤的竞争吸附特征,利用低场核磁共振技术探测煤样中CH4中由元素的含量和分布,而CO2和N2分子中没有H,不产生核磁共振信号,当煤中吸附气体含量和状态发生改变时,可以通过T2谱中CH4的核磁共振信号来判断,进而分析各种气体间的竞争吸附关系和演化规律。

2022-06-22 14:25:45 214 0
种子萌发的温度
Z好具体说明是几度... Z好具体说明是几度 展开
2013-01-01 07:22:34 310 3
测定玻璃化转变温度的常用方法-低场核磁共振法

测定玻璃化转变温度的常用方法-低场核磁共振法

什么是玻璃化转变温度?

玻璃化转变温度是指由高弹态转变为玻璃态或玻璃态转变为高弹态所对应的温度。玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。

玻璃化转变温度是高分子聚合物的特征温度之一。以玻璃化温度为界,高分子聚合物呈现不同的物理性质:在玻璃化温度以下,高分子材料为塑料;在玻璃化温度以上,高分子材料为橡胶。从工程应用角度而言,玻璃化温度是工程塑料使用温度的上限,是橡胶或弹性体的使用下限。

玻璃化转变的影响因素

由于玻璃化转变是与分子运动有关的现象,而分子运动又和分子结构有着密切关系,所以分子链的柔顺性、分子间作用力以及共聚、共混、增塑等都是影响高聚物Tg的重要内因。

此外,外界条件如作用力、作用力速率,升(阵)温速度等也是值得注意的影响因索。

在玻璃化转变温度以上,高聚物表现出弹性;在玻璃化转变温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。但是,他不是制品工作温度的上限。比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。

测定玻璃化转变温度的常用方法:

1.膨胀计法:在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。

2.折光率法:利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。

3.热机械法(温度-变形法) 在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。

4.DTA法(DSC):以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自由度的变化而呈现显著的变化,其中,热容的变化使热分析方法成为测定高分子材料玻璃化温度的一种有效手段。

5.动态力学性能分析(DMA)法:高分子材料的动态性能分析(DMA)通过在受测高分子聚合物上施加正弦交变载荷获取聚合物材料的动态力学响应。

6.低场核磁共振法:

NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃方位、定量的研究样品。

玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。

当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。

T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其蕞低点,即为相转变点,所对应温度为Tg。

2022-11-10 22:16:02 238 0
高露洁牙膏氟含量测试-低场核磁共振法

高露洁牙膏氟含量测试-低场核磁共振法

含氟牙膏(高露洁):

含氟牙膏是指含有氟化物的牙膏。科学家发现,氟化物能有效预防龋齿,增强牙齿抗龋的能力。对于儿童,特别是6岁以下的儿童,由于吞咽反射比较差,要注意防止氟摄入过量。

高露洁牙膏氟含量

氟离子在牙膏中的用量为1000mg/kg,大量临床试验表明,龋齿减少约20%-30%。如果把质量分数为0.02%或0.05%氟化钠加入含漱剂中,龋病可减少40%。20世纪80年代开始,龋病患者明显地减少,与牙膏加氟有密切的关系。除饮用水加氟外,良好的牙齿卫生教育和个人卫生水平的提高无疑也起作用。牙膏中添加氟化物,可减少龋病是确信无疑的,但可靠地评定牙膏中蕞佳的氟化物剂量是困难的。

高露洁牙膏中氟含量的作用

1.直接yi制牙菌斑的细菌:氟对产酸菌有抑制作用。它可抑制致龋链球菌细胞内多糖的贮存,影响细菌的生长和繁殖;抑制致龋链球菌合成胞外多糖,减少细菌和菌斑在牙面上的粘附。

2.氟对牙釉质的作用:牙表膜是细菌附着于牙面的基础,氟对牙表膜的形成和菌斑生长起重要的抑制作用。氟离子与釉质羟基磷灰石中的氢氧根离子交换作用,形成氟磷灰石,则会增强釉质的结构,降低溶解性,从而增强抗龋能力。

3.促进矿化:促进龋病开始阶段已被脱矿质化的牙釉质重新矿化。

利用低场核磁共振法可以快速、准确测量氟含量,测试过程与氟化合物和牙膏配方无关。该方法检测快速、易于操作和校准,并且无需额外制备样品,无需培训即可使用。核磁法的快速与简便使之成为生产过程、产品开发和质量控制中氟含量测试的shou选方法。

低场核磁共振法如何测量高露洁牙膏氟含量:

核磁法是基于样品中氟核的含量与核磁共振信号强度成线性关系。NMR信号幅度与可溶性氟质量成正比,通过这样线性关系,即可快速检测待测样品氟含量。

由于固体或不可溶的氟信号衰减非常快,例如在氟化钙(CaF2)或氟化镁(MgF2)中,核磁信号仅检测到可溶性氟。使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号强度(A1)为样品中可溶和不可溶氟信号总和。180度脉冲后,检测自旋回波信号幅度为A2,此时不可溶氟的信号已经衰减为0,A2仅为可溶氟的信号强度。因此,信号强度A2与样品的氟含量成正比。

2022-07-22 15:20:30 249 0
lf-nmr/mri 低场核磁共振

低场核磁共振(Low-Field Nuclear Magnetic Resonance,LF-NMR)或低场核磁共振成像(Low-Field MRI)是指在相对较低的磁场强度下进行的核磁共振技术或成像技术。相对于传统的高场核磁共振技术(如1.5T或3T),低场核磁共振通常指磁场强度在0.1T到1.5T范围内的系统。


lf-nmr/mri低场核磁共振技术具有一些特殊的应用和优势:

1.低成本:相对于高场核磁共振系统,低场核磁共振系统的建设和运行成本较低,使得该技术在一些预算有限的研究或应用领域更具可行性。

2.便携性:低场核磁共振系统可以设计为便携式设备,易于移动和部署。这使得它在野外、临床诊断或偏远地区等场景下的应用具有优势。

3.特定应用:lf-nmr/mri低场核磁共振技术在某些特定应用中具有优势,例如食品质量检测、油水分离、岩心分析等。由于不同核磁共振参数(如T1、T2等)在不同场强下的变化特点,低场核磁共振可以提供特殊的信息。

低场核磁共振成像:lf-nmr/mri低场核磁共振成像通常用于医学和生物学领域,如关节成像、脑部成像等。虽然低场成像分辨率较低,但它具有较短的扫描时间和较低的磁场要求,对某些临床情况或特定应用具有一定的优势。


需要注意的是,低场核磁共振系统的性能和成像质量相对较差,分辨率较低,对于某些细节的观察可能不够清晰。因此,在选择核磁共振系统时,需要综合考虑具体应用需求、成本和设备性能等因素。


lf-nmr/mri低场核磁共振主要可分为磁体、射频、谱仪和温控四个部分;


2023-07-10 13:03:06 110 0
种子萌发为什么要用脱脂棉
 
2012-10-01 18:37:27 381 3
碳纸纤维树脂含量比-低场核磁共振法

碳纸纤维树脂含量比-低场核磁共振法

什么是碳纸纤维?

碳纸纤维是指以炭纤维为增强剂的功能增强材料,基质为天然纸浆或合成纸浆,辅以黏合剂和填料经抄纸工艺而制得的纸状复合材料。炭纤维与纸浆的性能千差万别,两者复合抄纸后性能互补,赋予纸多种功能,拓宽了纸的用途。炭纤维长度多用了3~6mm的短切纤维,纸浆可用天然纤维,也可用合成纤维纸浆。根据所抄纸的用途,采用不同的纸浆。

树脂含量的作用

当我们进行碳纤维树脂基复合材料加工时,经常遇到一个问题,比如需要使用多少量的树脂。对于一个目标项目和所需的碳纤维复合材料种类而言,在对树脂使用量进行评估时,该项目的设计方案和目标部件对于所需要材料的数量比较重要。对于手工铺层而言,纤维/树脂比例通常为50%。精确一点来讲也就是使用207克纤维和207克树脂混合。考虑到目标产品的特殊需求,有时候在纤维与树脂的比例会有所调整,比如:50/50纤维/树脂比:207克纤维和207克树脂。

低场核磁主要用于测试分子与分子之间的动力学信息,通过弛豫时间得到分子运动信息,分子与分子之间的作用信息;研究领域属亚微观领域(分子之间),可测定玻璃态转化温度、高分子材料交联密度、造影剂弛豫率、孔径分布及孔隙度等,广泛应用于食品工业、石油工业、医药工业、纺织工业、聚合物工业。

低场核磁法检测碳纸纤维树脂含量原理

基质和树脂中的H质子都存在核磁共振氢信号,但磁共振信号存在差异。因此,通过对NMR信号进行采样,可以获取树脂核磁信号,从而进行定量测量。在测试之前,根据确定的标准曲线,确定核磁信号强度与树脂含量的关系,可在30秒 – 2分钟内测得树脂含量。

低场核磁应用

低场核磁共振主要是指磁场强度比较低的核磁共振仪器。低场核磁共振技术应用领域非常广泛,而且还处在不断拓展之中,低场核磁共振技术主要基于四个方面进行样品分析与检测:(1)基于信号幅值的分析检测;(2)基于图像(信号二维分布)的分析检测;(3)基于弛豫时间的分析检测;

低场核磁共振技术在食品农业、地质勘探、石油化工、生物医药、材料科学等诸多方面体现出越来越广泛的应用,成为一种重要的分析测试工具。

2022-08-12 11:25:56 162 0
含氟牙膏氟含量检测-低场核磁共振法

含氟牙膏氟含量检测-低场核磁共振法

含氟牙膏:

含氟牙膏是指含有氟化物的牙膏。科学家发现,氟化物能有效预防龋齿,增强牙齿抗龋的能力。对于儿童,特别是6岁以下的儿童,由于吞咽反射比较差,要注意防止氟摄入过量。

含氟牙膏氟含量

氟离子在牙膏中的用量为1000mg/kg,大量临床试验表明,龋齿减少约20%-30%。如果把质量分数为0.02%或0.05%氟化钠加入含漱剂中,龋病可减少40%。20世纪80年代开始,龋病患者明显地减少,与牙膏加氟有密切的关系。除饮用水加氟外,良好的牙齿卫生教育和个人卫生水平的提高无疑也起作用。牙膏中添加氟化物,可减少龋病是确信无疑的,但可靠地评定牙膏中蕞佳的氟化物剂量是困难的。

含氟牙膏中氟含量的作用

1.直接抑zhi牙菌斑的细菌:氟对产酸菌有抑制作用。它可抑制致龋链球菌细胞内多糖的贮存,影响细菌的生长和繁殖;抑制致龋链球菌合成胞外多糖,减少细菌和菌斑在牙面上的粘附。

2.氟对牙釉质的作用:牙表膜是细菌附着于牙面的基础,氟对牙表膜的形成和菌斑生长起重要的抑制作用。氟离子与釉质羟基磷灰石中的氢氧根离子交换作用,形成氟磷灰石,则会增强釉质的结构,降低溶解性,从而增强抗龋能力。

3.促进矿化:促进龋病开始阶段已被脱矿质化的牙釉质重新矿化。

利用低场核磁共振法可以快速、准确测量氟含量,测试过程与氟化合物和牙膏配方无关。该方法检测快速、易于操作和校准,并且无需额外制备样品,无需培训即可使用。核磁法的快速与简便使之成为生产过程、产品开发和质量控制中氟含量测试的首先方法。

低场核磁共振法如何测量含氟牙膏氟含量:

核磁法是基于样品中氟核的含量与核磁共振信号强度成线性关系。NMR信号幅度与可溶性氟质量成正比,通过这样线性关系,即可快速检测待测样品氟含量。

由于固体或不可溶的氟信号衰减非常快,例如在氟化钙(CaF2)或氟化镁(MgF2)中,核磁信号仅检测到可溶性氟。使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号强度(A1)为样品中可溶和不可溶氟信号总和。180度脉冲后,检测自旋回波信号幅度为A2,此时不可溶氟的信号已经衰减为0,A2仅为可溶氟的信号强度。因此,信号强度A2与样品的氟含量成正比。

2022-07-20 09:54:24 217 0
低场核磁法研究天然气吸附过程

低场核磁法研究天然气吸附过程

天然气是成煤过程中生成,并以吸附和游离状态赋存于地下煤层及围岩的自储式天然气体。

资料显示,地质的演化或者现阶段地质的构造状况对天然气的开采影响十分巨大。由于我国的含煤岩系是经历了多期构造作用的影响而保存,与其他国家大为不同。煤体结构较为特殊,降低了煤层气的渗透性能且影响产能输出;同时,由于煤是自生自储,它与石油天然气的储层截然不同,多种因素制约着它的产能。

研究发现煤层的自身孔隙的总容积要远远小于天然气总含量,所以可以明确的指出天然气肯定还有另外一种存在状态,即吸附态,也就是说在某种多孔介质中容纳了以类液态或凝聚态存在的气体,其存在方式分为化学吸附和物理吸附。通过各种理论和大量的实验证明,煤岩中的煤层气主要是以物理吸附的方式存在;此外,解吸是指天然气分子在其被煤岩等介质吸附后,受到了在热运动或者是某种振动的影响下,使天然气分子重新活跃,且足以摆脱吸附介质的吸附力,这样天然气分子又能以游离状态返回到天然气分子群中。研究发现,天然气的解吸/吸附在一定条件下可以相互转换。

天然气吸附过程

研究表明天然气吸附先是渗流过程,即由于强大的外部压力使甲烷的气体分子渗流到大孔系统中流动,并且在煤基质外的表面产生一种煤层气气膜。

当气体分子经过介质颗粒外时,有一部分气体分子会被介质外表面弓虽力吸附,并且被吸附的气体分子会通过介质的微孔隙向煤介质内部扩散;同时另一部分会通过往介质颗粒内的孔道向内扩散。

天然气吸附过程包括了外扩散、内扩散以及表面扩散。而最慢阶段,一般是内扩散阶段的速率,决定了吸附过程的总速率。

低场核磁法研究天然气吸附过程

低场核磁共振技术是一种先进的无损检测技术。低场核磁共振技术的基本工作原理是先获得被测物体的核磁共振信号,根据不同组分的弛豫时间差异,得到核磁共振成像图或T2弛豫分布图谱,低场核磁共振技术既可检测多孔介质的结构特性,也可检测多孔介质的某些物理特性和流动参数及流体和多孔介质骨架间相互作用,研究流体在其中流动状况及分布规律.低场核磁共振T2弛豫分布技术,可以根据测量到的驰豫时间差异来分析吸附在煤体中的气体,实现天然气吸附过程即时的、动态的观测,有助于研究煤储层中煤层气赋存运移规律,直观揭示煤层气在煤层中的赋存流动状态、分析运移产出过程中的各方面影响因素,在煤储层物性及天然气吸附规律的分析和研究中具有更好的适用性。

核磁共振的驰豫时间可表征气体的分子运动性,通过驰豫时间大小差异可表征不同吸附状态的甲烷气体。典型的煤/页岩试样的T2图谱曲线具有明显的3个峰,依次为吸附态、孔隙束缚态、自由态气体。

2022-06-17 11:32:24 158 0
低场核磁共振结合水自由水

低场核磁共振结合水自由水

什么是自由水与结合水?

自由水又称体相水,滞留水,不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。结合水是指在细胞内与其他物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、竣基、羟基等均可与水结合,成为结合水。所有结合水不再能溶解其他物质,较难流动。

自由水是指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。如人和动物血液中含水83%,多为自由水,可把营养物质输送到各个细胞,又把细胞产生的代谢废物运到排泄器官。它的数量制约着细胞的代谢强度。如呼吸速度、光合速度、生长速度等。自由水占总含水量百分比越大则代谢越旺盛。

心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到蕞低程度,但原生质的基本结构还可以保持并可 抵抗干旱和寒冷等不良环境。

自由水和结合水的区分不是jue对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。

低场核磁共振结合水自由水检测:

低场核磁也叫时域核磁,用于测试分子与分子之间的动力学信息,例如用低场核磁共振测自由水结合水。自由水与结合水中H所处的状态不同,水分子的运动性差异很大,对应的弛豫时间差别也非常大,通过低场核磁共振技术可以灵敏地检测自由水结合水。一般自由水对应的弛豫时间长,结合水对应的弛豫时间短。

低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。

NMI20系列低场核磁共振成像分析仪(带变温系统)

2022-12-12 22:08:19 135 0

11月突出贡献榜

推荐主页

最新话题