全部评论(1条)
-
- mdaocax4206 2016-11-10 13:54:41
- 1、蛋白在酶解过程中,其结构会发生一系列明显的变化,具体表现为肽链被切断,生成分子量不等的多肽,同时一些原来包含在蛋白质内部的疏水性氨基酸被暴露出来,当这些疏水性氨基酸与舌上的苦味受体(味蕾)接触时便会呈现苦味。这些呈现苦味的肽被称为苦肽,研究表明苦肽的苦味程度与苦肽的蔬水度、苦肽的氨基酸的位置以及苦肽的空间结构有关。 2、按照来源不同,目前应用于研究的酶主要分为微生物蛋白酶、植物蛋白酶以及动物蛋白酶三大类。各种不同的酶能够作用蛋白不同的位点,得到不同的产物,其苦味程度也有所差异。同时在各种水解条件下,同种酶对蛋白的水解程度也会不同,这也影响产物的苦味程度。研究人员主要通过改变这些因素来控制水解蛋白的苦味。
-
赞(12)
回复(0)
热门问答
- 蛋白酶水解产生苦味的原因
- 蛋白质能被蛋白酶水解成氨基酸吗
- 表面张力产生的原因
- 表面张力是液体内部分子对表面层(分子稀疏)的引力大于气体分子对于表面层的引力,从而合力垂直指向液体内部,使得表面层分子有向内部运动的趋势,但是为什么表面张力的方向却是与液面相切?
- 硫溶胶产生的原因
- 磁力产生的原因是什么?
- 地核产生磁力的原因?
- 土壤酸碱度的产生原因
- 盐雾试验箱产生数据误差的原因
- 酸式盐水解后产生的氢氧根是水电离产生的吗根据质子
- 为什么白酒过一段时间会有苦味
- 才烤出来的时候很香但过几天就会有苦味望同行给予帮助!... 才烤出来的时候很香 但过几天就会有苦味 望同行给予帮助! 展开
- 电磁流量计产生的误差的原因
电磁流量计产生的误差的原因常见有以下几种:
1.被测液体中含有固体成分。出现这种情况时,仪表会出现以下问题:液浆噪声,电机表面沾染污垢,衬里被磨损或被沉积物覆盖,流通截面积缩小,导电沉积层或绝缘沉积腹杆电极或衬里,若沉积层有导电物质,流量信号很有可能被短路,使仪表出现故障。
2.管内液体没有充满。由于背压不足或流量传感器安装位置不良,致使测试管内液体未能充满。当管内存在很少量气体时,则会使测量结果偏离实际值,造成小误差;当有很多气体存在时,则会出现测量值不稳定,输出晃动,此时测量值误差较大,不能作为正确结果。
3.电极和接地环材质选择不当。因材质与被测介质不匹配而引发故障的电磁流量计与介质接触的零部件有电极与接地环,匹配失当除耐腐蚀问题外,主要是电极表面效应。电极能否可靠地检测流量信号,对流量计的性能至关重要。接地环起到与介质形成电的连接,通过接地线和零电位接通。当与传感器连接的工艺管道为塑料或内有绝缘涂层的管道时,必须安装接地环,否则会造成仪表不能正常工作。
4.液体电导率超过允许范围引发的问题。液体导电率若接近下限值也有可能出现晃动现象。因为制造厂仪表规范规定的下限值是在各种使用条件较好状态下可测出的Z低值,而实际条件不可能都很理想,于是就多次遇到低度蒸馏水或去离子水,其导电率接近流量计规范规定的下限值5,使用时却出现输出晃动。通常认为能稳定测量的导电率下限值要高1~2个数量级。
本篇文章转载于:http://www.akltyq.com/newview.asp?id=2199
- 科学家破解感知苦味的受体结构
早期的四足类动物离开了海洋,勇敢地登上陌生的陆地,***终演化出了爬行类、鸟类以及哺乳类等陆生动物。这些曾拥有共同祖先的四足动物,为什么在今天展现出了迥异的大脑特征?一些在我们看来较为“低等”的动物的大脑,为什么却拥有令人羡慕的神奇再生能力?
***新一期《科学》杂志的封面通过4篇研究论文,揭示了爬行动物与两栖动物大脑演化过程中的关键创新,讲述了那些前所未闻的大脑演化故事。
以往,科学家在研究脊椎动物大脑演化时,关注的往往是不同物种脑区层面的相似性。而***新研究能够深入细胞层面,聚焦不同细胞类型在大脑演化中扮演的角色。
这些关键突破的出现,离不开单细胞空间转录组学的发展。过去几年,科学家已经在小鼠的特定脑区鉴别出数百种细胞,但如此众多的细胞类型和脑区如何演化,仅仅依靠对小鼠大脑的研究显然无法解决。
在4项***新研究中,多个国家的研究团队分别对爬行动物和两栖动物大脑的细胞类型演化进行了深入探索。
在其中一项研究中,来自马斯克•普朗克大脑研究所的团队选择的研究对象是鬃狮蜥(Pogona vitticeps)。借助单细胞RNA测序技术,他们创建了这种爬行动物的全脑细胞图谱,并且在与小鼠脑细胞图谱的对比中,颠覆了哺乳动物大脑演化的一个核心观点。
此前的研究普遍认为,由于哺乳动物由爬行类演化而来,因此哺乳动物的大脑应该以爬行类的基本特征为主,并辅以一些新的特征。
▲研究团队对不同脊椎动物的神经元演化开展了转录组学分析
但在***新研究中,通过对高分辨率图谱的对比,研究团队观察到几乎所有脑区的细胞类型都存在差异。在保守的脑区中,同样存在全新的细胞类型。保守与创新细胞类型的共存说明,脑细胞类型在演化上具有可塑性。因此,爬行动物与哺乳动物在共同祖先的基础上,各自独立演化出自身的神经元与神经回路特征。
同期的另外两篇论文共同研究了一种神奇的两栖动物:美西钝口螈(Ambystoma mexicanum)。这种蝾螈是动物研究中的当红明星,它们因脊椎、心脏与四肢能够再生而。更夸张的是,它们不仅能形成新神经元,连大脑都具有一定的再生能力。
美西钝口螈(以下简称蝾螈)的大脑是如何再生的?为什么它们的再生能力如此强大?这些研究对蝾螈的大脑进行了单细胞转录组学分析。
其中,来自瑞士和奥地利的研究团队探索的问题是,蝾螈能否再生出大脑中的所有细胞类型,包括脑区间的连接。
这项研究利用单细胞RNA测序绘制了蝾螈大脑的细胞类型图谱,从而明确了其中的所有细胞类型,包括不同类型的神经元、祖细胞等。一个出人意料的发现是,在祖细胞分化为成熟的神经元的过程中,大量祖细胞会经历一个中间阶段:成神经细胞,而这种细胞此前被认为是蝾螈不具备的。
随后,研究团队切除了蝾螈大脑的一部分,从而测定大脑再生过程中产生的新细胞类型。结果,所有被切除的细胞类型都得到了恢复、被切断的神经元连接也重新连接,这意味着再生区域的原始功能可以重新恢复。
▲蝾螈大脑的结构、保守性与神经再生过程
而在与哺乳动物的对比中,蝾螈的脑细胞与哺乳动物的海马体、嗅觉皮层表现出高度相似性,其中一种细胞类型甚至与哺乳动物的新皮层具有相似性(哺乳动物具有6层新皮层,两栖动物则不具备这一结构)。这些发现说明,上述脑区在演化中具有保守性,或者各自演化出相似的特征;而哺乳动物的新皮层可能拥有来自两栖动物脑部的祖先细胞。
另一项由杭州华大生命科学研究院主导的研究,揭示了蝾螈具有强大再生能力的关键线索。作者分析了蝾螈的大脑发育和再生过程,并构建了***蝾螈脑再生时空图谱。
在造成皮层区域损伤后,研究团队观察了蝾螈大脑从损伤到再生修复的过程,并且从中找到了关键的细胞变化。伤口区域很早就出现了新的神经干细胞亚群,它们由附近的其他神经干细胞亚群受刺激后转化而来,并在后续的再生过程中新生出神经元,以填补损伤部位缺失的神经元。
▲时空图谱展示了蝾螈大脑的发育与再生过程
研究团队还对比了蝾螈大脑分别在发育与再生过程中的神经元形成,发现这两个过程高度相似。因此研究猜测,这或许是脑损伤诱导了蝾螈神经干细胞逆向转化,回到发育时期的年轻化状态,以启动再生过程。
***后一项研究由哥伦比亚大学的研究团队领衔。此前的研究告诉我们,脊椎动物认知功能的演化与前脑的两项关键创新有关:哺乳动物的6层新皮层,以及蜥形类(包括爬行动物与鸟类)的背侧室嵴。但它们的产生过程并不清楚。
***新研究建立了欧非肋突螈(Pleurodeles waltl)大脑的细胞类型图谱,与其他四足动物的对比显示:蜥形类的一部分背侧室嵴的出现,要追溯到四足动物祖先;相反,这些欧非肋突螈却不具备哺乳动物新皮层的细胞与分子特征。由此,这些发现为两项创新的出现提供了重要线索。
对于这4项研究,同期的观点文章点评道:“这些文章均产生了大量单细胞数据集,并通过对已有公开数据的挖掘,展示了数据分享的重要性,以及积累来自不同物种的单细胞数据、用于比较演化过程的力量。”
- 紫外可见吸收光谱的产生原因
- 真空干燥箱产生倒吸的原因?
- DZf-6020型真空干燥箱,操作步骤正确。真空泵中的油被倒吸入真空箱中。请问产生这种现象的原因?
- 液体表面张力产生的原因是什么
- 单臂电桥产生非线性误差的原因?
- 单臂电桥压力传感器的非线性误差原因是?
- 玻片凝集现象产生的原因。
- 玻片凝集现象产生的原因。
- 环氧树脂结晶是什么原因产生的
- 酸水解蛋白质为什么没有旋光异构体产生
- 尤肉恶性肿瘤产生原因
参与评论
登录后参与评论