全部评论(0条)
热门问答
- 如何使用dna folding进行核酸分析
- 如何进行DNA纯化
- 核酸DNA质谱解析
- 如图,17个碱基的DNA序列,负离子模式打质谱后得到如图所示的质谱图,感觉是一簇峰,峰与峰之间的m/z差82,这是为什么... 如图,17个碱基的DNA序列,负离子模式打质谱后得到如图所示的质谱图,感觉是一簇峰,峰与峰之间的m/z差82,这是为什么 展开
- 红外光谱如何进行定理分析?
- 使用核酸蛋白检测仪进行实验时,需要注意些什么?
- 使用核酸蛋白检测仪进行实验时,需要注意些什么?
- 如何使用soapUI进行压力测试
- 如何进行氯化铯密度梯度离心提取核DNA
- 夏日炎炎,核酸采样工作该如何正常进行呢?
夏天来了,高温天气也将会接踵而来了,我们大家都要提前做好预防中暑的措施,更何况我们的医护人员每天数小时穿着闷热的防护服做核酸采样工作,并且每次穿脱防护服需要花大量的时间和进行防护繁琐的流程,很是不方便。医护人员每天只能暴露在外面,无法与做核酸的人员保持距离,无接触地分离开来,无法达到很好的防护效果,存在很大的隐患。
目前市面上设定的核酸检测采样点的是集装箱款的、报亭款的普通的较多。这虽然解决了人员的就近核酸采样,可以相对快速锁定有核酸异常的人员及减小异常区域的范围,有一定的效果,但医护人员还是不能很好地保护起来,这种的没有密封性及不能很好的处理工作空间的环境,长久时间下来,如果有核酸异常人员,可能会对医护人员带来隐患。
为了更好地保护我们的医护人员和为她们提供一个良好的工作环境。米开罗那推出了一款可移动式多工位核酸检测采样箱,可以将核酸采样的工作人员和参加核酸检测的人员分离隔离开来,提供一个良好舒适的采样空间。
米开罗那核酸采样亭采用的是3mm厚全304不锈钢结构,按照P4实验室泄露率要求制作,与外界隔离可靠,适用各种场景;采用紫外线和气体喷雾消杀;新风系统采用粒子过滤器,能过滤0.3μm颗粒物,效率达99.99%,在正压保护下采样人员无需穿防护服,只需要穿普通工作服即可,操作轻便,方便进出;搭配多工位工作台,便于采样人员灵活操作,便捷。
同时,米开罗那核酸采样手套箱工作站与市面上其他产品相比有以下差异。
米开罗那是一家按德国商业文化理念和法律程序创建的德国品牌,拥有22年隔离防护类手套箱生产制造经验,核级密封箱室生产工艺。在核酸采样上,我们已经研发生产了一款病毒(核酸)采样手套箱工作站SP4(3000X2000),为核酸采样人员提供了良好舒适的采样环境,加快了15分钟核酸采样圈的构建。
- 如何进行食品检测仪现状分析?
如何进行食品检测仪现状分析?
- 气相色谱图谱分析如何进行积分
- 什么是流动比率?如何进行分析?
- 什么是流动比率?如何进行分析?
- 如何应用红外光谱进行分析测试
- 如何采用逻辑分析仪进行SPI分析
- 如题,不知道得到逻辑分析仪的朋友们,有没有用它进行SPI通信协议分析啊,介绍下经验啊,我用它分析时,虽然有波形,但是不知道怎么使用。
- 使用NexION ICP-MS进行土壤多元素分析
土壤元素分析不仅对农业至关重要,从环境角度来看也很重要。有毒金属主要通过污染物直接(即工业废物或排出物)或间接(即从水中浸出、消费者污染物)进入土壤。这些有毒金属可以通过扬尘直接被人类吸收,也可以通过被可食用动植物摄取进入食物链。因此,土壤中污染物鉴别以及有毒元素水平测定是需要考量的重要方面。
在过去,从土壤中浸出这些元素的首 选方法是使用硝酸和盐酸浸提法。然而,这只能提取部分相关的金属,且没有指明其在土壤中的总浓度,因为一些元素浸提无法浸出,而是保留在土壤物质的晶格中。因此,通常在电热板上使用硝酸(HNO3)、盐酸(HCl)、氢氟酸(HF)和高氯酸(HClO4),执行四步酸消解法,以实现完全消解。
因此,电感耦合等离子体质谱(ICP-MS)是一种理想的分析技术,它具有多元素检测能力,能够在超低浓度下进行测量,并且具有较宽的线性动态范围。然而,与所有分析技术一样,ICP-MS也并非没有干扰。ICP-MS有基于等离子体和基质的多原子干扰,需要通过使用校正方程、碰撞或反应化学进行干扰去除。
所有标准溶液和样品均在线添加内标,无需手动添加。
为了验证该技术的准确性,分析了3种土壤有证标准物质(CRM):GSS-1、GSS-18和GSS-21(中国地质科学院地球物理地球化学勘查研究所,中国河北)。这三种CRM的性质和来源不同,包括盐碱土和灰色石灰质土,不同样本基质之间的元素浓度差异很大。例如,不同土壤CRM Mn和Ag的浓度分别为529-1760μg/g和0.066-0.35μg/g。
仪器
为了提高效率并简化分析,所有分析都使用氦(He)作为碰撞气体,这大大减少了多原子干扰的影响,适用于基质变化较大以及干扰未知或特征明确的情况。表1列出了具体的NexION ICP-MS条件。
表1 仪器参数
通过对上述三种标准物质进行分析,确定了该方法的准确性。分析物回收率参见图1,显示所有分析物的回收率均在认证值的10%以内,从而验证了方法的准确性。
图1 标准物质中的分析物回收率
在确定该方法的准确性后,对土壤样本进行了五小时的连续分析,验证其稳定性。五小时前后对GSS-1进行了分析。图2显示尽管该基质具有挑战性和复杂性,但NexION ICP-MS系统仍表现出出色的稳定性。
值得注意的是,该数据是在未经重新校准或样品之间未进行过度冲洗的情况下获得的,因此可以基本近似一般分析实验室中正常的样本测试流程。5小时内,GSS-1每小时分析1次,GSS-1的RSD%均在4%以内(图2)。图2还显示,GSS-1中所有分析物的回收率都在认证值的10%以内。
图2 5小时土壤分析中GSS -1的%RSD和%回收率
在相同的分析运行中,还监测了相对于校准空白的内标回收率(图3)。本研究中,内标回收率均在校准空白原值的15%以内,且均在美国EPA方法6020B(用作参考)规定的30%范围内,进一步验证了方法的稳健性。这种卓 越的稳定性和稳健性源自于NexION 的仪器设计,例如专为ICP-MS设计的固态、自由运行射频发生器。这种独特的发生器可以进行变化基质的快速阻抗匹配,提供性能不受影响并具有稳健性和长期可靠性的等离子源。三锥接口的大孔径锥,结合四极杆离子偏转器,确保较少样本沉积在锥体上,同时也没有需要清洁或维护的透镜,从而实现较少维护、出色的稳定性和高基质耐受性。
图3 5小时土壤分析中的内标稳定性
本研究证明了PerkinElmer NexION ICP-MS在较长时间内轻松分析土壤中21种元素的能力。分析具有出色的准确性和稳定性,并且通过NexION ICP-MS的独特特征实现,例如:
三锥接口和四极杆离子偏转器,实现出色的基质耐受性和稳定性;
专为ICP-MS应用设计的独特固态、自由运行的射频发生器,提供准确阻抗匹配,快速调整并适应变化的等离子体负荷。
通过准确性和稳定性保证,NexION ICP-MS提供了应对土壤分析挑战的完整解决方案。
请扫描下方二维码获取《使用NexION ICP-MS进行土壤多元素分析》文集
- 使用TOC分析进行过程控制的新趋势
工艺过程控制和资产保护
测量最 终排放时的有机物负荷对于法规合规性至关重要。与此同时,在流动点和处理工艺过程中监测有机物含量也已成为过程控制和资产优化的有效做法。
例如,城市污水处理厂对流入的污水进行碳监测有助于加强生物处理,从而优化工艺过程控制和实时做出过程决策的能力。
TOC分析作为一种提高水处理设备耐用性的工具正在获得认可。
随着工业和中水回用,工厂越来越多地使用过滤膜来处理废水,可以使用TOC分析仪来快速检测高有机负荷,从而限制结垢并进行水处理效率评估。
此外,许多工厂正在将生物处理和膜过滤合并到称为膜生物反应器(MBR)的工艺中。MBR进水中的直接碳监测使工厂能够优化生物处理并保护膜免受有机物污染。
最 佳食物与微生物的比例
市政工厂按照多个步骤处理流入的废水。初级处理需要物理分离,通过筛选和沉淀提取固体。在这种初级处理之后,工厂通常使用二级生物处理工艺来限制进水废水的有机物含量。[7]
该工艺通常取决于在活性污泥中使用好氧细菌来帮助分解水中的有机化合物。经常通过传统BOD测试测量细菌的“食物”——有机分子。[3]
为确保处理过程中有机物和微生物的适当平衡,工厂使用称为食物与微生物(F:M)比率的通用参数。[2]F:M比值低的系统意味着“食物”不足,并导致负责分解有机分子的微生物没有足够的“食物”去分解。相反,在高F:M比值的系统中,微生物可能会因有机物负荷过高而无法胜任分解工作,这会导致有机污染物无法有效祛除。
为了最 大限度地提高生物质的健康状况并确保有机污染物的祛除,工厂以最 佳F:M比值运行是关键。
与传统的需氧量测试不同,TOC分析仪直接测量废水中所含的碳量,从而使操作员能够准确地定量分析F:M比值中的“食物”。BOD5测试的五天响应时间通常不足以快速进行工艺调整,尤其是在有机物负荷波动的工厂中。为了加快对流入废水中有机物负荷波动作出响应的时间,许多工厂正在转向TOC分析,这种分析无需危险化学品即可提供快速分析。
利用TOC分析进行快速工艺调整,同时直接测量进入系统的碳,可使工厂维持最 佳F:M比值,确保生物处理能正常运行。
超滤(UF)和反渗透(RO)膜优化
能够直接快速检测有机碳也使得TOC分析成为污水处理厂膜保护的可靠工具,尤其是在水源有限的地区。这些缺水地区已经开始使用超滤(UF)和反渗透(RO)膜来处理废水以供再利用。[5] [6]
在膜过滤中,受污染的水通过半透膜输送,该膜将悬浮固体和大分子量化合物从工业废水中分离出来。然而,水流中大量的有机污染物通常会聚集在膜表面上导致有机物污染,并且一些化合物会导致膜损坏。膜污染的增加导致穿过膜的液体通量减少,降低了处理的有效性。
虽然增加跨膜压力(TMP)以维持适当的跨结垢膜通量可能是有效的[5],但这往往会导致能源成本的增加。修理或更换污损的膜会限制废水处理厂的操作能力,也会增加成本。
尽管反冲和原位清洗(CIP)策略是常规应用,但对于处理碳含量高的水的膜通常需要频繁的清理周期。[5]这不仅会导致停机时间增加和清洗化学品的成本增加,还会缩短膜的使用寿命。
为了保证膜的使用寿命并以最 高效率正常运行,工厂直接跟踪膜上游水中有机物含量是有益处的。虽然传统的需氧量测试可以提供污染物含量的间接指示,但TOC分析可更简单地提供有关废水碳含量的即时数据。使工厂可以调整流量,以保护膜,同时评估处理效果,并确定上游的工艺波动。膜前后水的在线TOC分析提供了跨膜的碳含量和萃取效率随时间变化的实时数据。
通过从需氧量转向TOC分析,许多工厂发现通过保护运行设备可以提高经济效益。
膜生物反应器(MBR)优化
膜生物反应器(MBR)系统是一种在市政和工业废水处理厂中都受到关注的处理工艺。该工艺结合了生物处理和过滤膜,以限制废水中有机物的数量。
MBR系统的优点是比传统的生物处理占地面积小得多,病原体去除能力提高以及更高等级的污水。
类似于传统的生物处理,MBR系统中的废水最初引入带有活性污泥的曝气池。在引入浸没在水中的膜之前,污泥中的微生物开始分解样品中的有机污染物(微滤或超滤)。[4]
水通过膜供给,这不仅提取额外的污染物,而且排斥在生物处理工艺中产生的任何固体。这种生物处理和浸没式过滤膜的混合,通常会产生比单一工艺更清洁的出水。
与其他膜过滤系统一样,结垢可能是MBR系统需要考虑的一个重要因素。[5]它们可能会堵塞并且产生淤泥,这需要增加停机时间和进行维护。
MBR系统与传统生物处理一样,依赖于维持最 佳的F:M比值以确保有效去除有机物。优化F:M比值是一种有效的方法,有助于减轻任何与MBR膜相关的风险。通过在一致的基础上以最 佳F:M比值运行,工厂可以保证生物质[4]的健康并限制可能导致膜污染的有机物。
尽管F:M比值的有机物含量传统上以BOD5进行测量,但工厂现在正在转换为在线TOC分析仪,以高速、直接测量水中的碳含量。[1]通过促进立即对工艺作出决策,操作员可以维持最 佳F:M比值,从而降低成本和对污染膜的维护工作量。
TOC能够快速直接分析碳含量的能力正在推动有机物分析通过排放法规合规性,并通过工艺控制和设备保护降低成本。[3]
结论
目前,BOD5是最常用的工业废水有机污染物参数。尽管它存在精度和许多其他问题,但它已被纳入全 球废水法规。虽然COD测试更快、更精确,但它需要使用和处置剧毒化学品。
TOC分析仪能够在几分钟内生成快速准确的数据,因此越来越受欢迎。与BOD5和COD测试不同,TOC分析仪直接测量有机物含量,而不是通过测量需氧量来间接确定有机物含量。
许多监管机构现在看到了最 先进技术(如TOC)的价值。目前,美国已授权工厂在进行长期相关性研究获得批准的情况下,使用TOC代替BOD。测试方法转变的一个例子是欧盟,由于缺乏有毒化学物质,欧盟不再推荐BOD5,而是将重 点放在TOC上。随着欧洲废弃过时的测试方法,其他国家开始意识到监测工艺转型和改变法规的好处。
随着技术的进步,世界各地的管理机构将继续在法规中引入更准确和精确的参数。在全 球工业增长持续扩张过程中准确监测废水的必要性从未如此重要。
TOC在法规监测、资产保护和工艺控制方面的能力使得工厂朝着示范性监测的未来发展。
- 溶解氧分析仪如何进行安装使用?
溶解氧分析仪,简称溶氧仪,一般采用浸入式安装技术,在此应注意,一定要选用原厂的安装支架。厂家配带的安装支架为不锈钢制成,带有塑料链条,通过调整链条长度可以改变传感器的浸入深度,支架上的引导管保证了传感器始终处于垂直位置。支架部分都经过特殊设计,它可以将水面的波动传至浸入管,从而引起浸入管的轻微振动,使得通过浸入管在探头的表面产生一个附加的清洗效果。有的用户为了减少投资,自己制作安装支架,往往导致支架上的浸入管和传感器之间密封不严,污水渗入,使得专用电缆和传感器的连接处长期浸泡在污水中,容易造成传感器的损坏;有的甚至不做安装支架,直接将传感器投入水中,这样在传感器和电缆之间会形成较大的拉力,传感器更容易损坏。
溶解氧分析仪溶解氧探头每周应用水轻轻清洗,发现膜头损坏应及时更换,电解液受污染也应及时更换。当污水中含有H2S、NH3、苯或酚这些成份时,对膜头是有害的。在这种场合下必须经常更换膜头。判断探头中电极的好坏只需看颜色即可,参考电极应是黑灰色,阴极(金电极)应呈黄色,而反电极必须发亮,否则应进行清洗或再生。
- 如何使用微孔板进行农药残留测试
- 如何使用python进行社交网络分析
- 如何使用SPSS进行PSM操作
10月突出贡献榜
推荐主页
最新话题
参与评论
登录后参与评论