仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

应用ZT|纳米分辨傅里叶红外光谱与成像技术(nano-FTI

Quantum Design中国子公司 2020-03-16 14:28:34 602  浏览
  •     许多包膜病毒诸如人类免疫缺陷病毒(即艾滋病毒,HIV),埃博拉病毒、流行性感冒病毒(IFV)和冠状肺炎病毒等致命性病毒对人类健康和公共卫生构成了持续的威胁。因此,关于病毒开展的各方面研究备受关注。其中,包膜病毒的细胞膜渗透行为是病毒进入宿主细胞,感染宿主细胞等一系列事件中的关键步骤。在病毒进入宿主细胞的过程中,包膜病毒如何与宿主细胞受体相互作用以及病毒膜包膜自身如何经历结构变化,Z终进入宿主细胞的病毒-细胞膜渗透行为的研究,能为开发新型抗病毒疗法和疫苗提供有利信息。


        近年来,流感病毒(IFV, 结构示意图1)已被用作包膜病毒的原型来研究病毒进入宿主细胞的过程。IFV中血凝素(HA)是嵌入IFV包膜的主要表面糖蛋白。 HA负责IFV与宿主细胞受体的连接,并在病毒进入过程中参与介导膜融合。众多研究已经为靶标和病毒膜之间的融合机制建立了一个公认的模型。该模型认为只有在靶标和病毒膜发生膜融合时才可形成孔从而介导病毒-细胞膜渗透行为。然而,其他报道也观察到在融合发生之前靶标和病毒膜的破裂。此外,关于腺病毒蛋白与宿主细胞的研究显示,宿主细胞膜可能在没有膜融合的情况下被破坏而进入病毒。另一方面,病毒包膜和靶宿主细胞膜具有不同的化学组成或结构,各个膜中形成孔的要求不同,因此靶宿主或病毒膜破裂也可能独立地被诱导。

    图1 流感病毒示意图 (百度百科)


        综上所述,关于病毒-细胞膜渗透行为的机理还存在一定的争议,明确单个病毒与宿主细胞的复杂融合机制,可为设计抗病毒化合物提供有利信息。然而,常规的病毒整体融合测定法是对膜融合事件的集体响应,不能对细微、尤其是在纳米尺度复杂的融合细节进行直接和定量的研究,因此无法直接量化一些可以通过研究单个病毒、纳米尺度表面糖蛋白和脂包膜来获得的融合细节。例如,病毒感染过程在分子水平上引起的病毒膜和宿主细胞膜的化学和结构组成改变,可以通过分子特异性红外光谱技术来探测。然而,单个病毒、表面糖蛋白和脂包膜尺寸小于红外光的衍射极限,限制了单个病毒的红外光谱研究。因此,找到一个既可以提供纳米高空间分辨率,还能探测机械、化学特性(分子特异红外光谱)和环境影响的工具,使其可在单病毒水平上研究病毒膜融合过程是十分重要的。


        德国neaspec公司经多年研发的纳米分辨傅里叶红外光谱和成像系统(nano-FTIR & neaSNOM)采用ZL化的散射式核心设计和准外差技术以及独特的宽光谱高能激光器(光谱范围:650—4000 cm-1),基于传统傅里叶红外光谱的核心原理,使得光谱和成像信息直接源于光学信号,无需光-热、光-力等复杂信号的转换,能对空间分辨率低至10 nm的样品进行直接的红外光谱及成像测量,提供与传统傅里叶光谱完全一致的红外光谱测量结果。因此,德国neaspec公司的纳米分辨傅里叶红外光谱与成像系统可实现高分辨率单个病毒、表面糖蛋白和脂包膜的原位光谱、化学图谱和结构鉴定,以及病毒与环境触发因素和细胞的相互作用研究,是单病毒水平上研究病毒膜融合过程的wan美工具



    图2 德国neaspec公司纳米分辨傅里叶红外光谱与成像系统( nano-FTIR & neaSNOM)实物图


        来自美国乔治亚大学和乔治亚州立大学的Sampath Gamage和Yohannes Abate等研究者采用 nano-FTIR & neaSNOM研究了单个原型包膜流感病毒X31在不同pH值环境中发生的结构变化。同时,还定量评估了在环境pH值变化期间,抗病毒化合物(化合物136)阻止病毒膜破坏的有效性,提供了一种YZ病毒进入细胞的新机制。


        nano-FTIR和neaSNOM对流感病毒 X31的近场红外光谱及成像研究提供了高空间分辨的优异光谱和成像结果,具体结果如下:

    1. 能清楚观察到单个流感病毒的形貌(高度20-30 nm, 大小约70-100 nm);

    2. 不同红外波长下病毒红外吸收对比明显;

    3. HA富集在病毒包膜外(对比图3 中f和g:包膜外1088 cm-1无红外吸收信号,1659 cm-1 有红外吸收信号,蛋白质在1659 cm-1 有吸收而在1088 cm-1没有);

    4. nano-FTIR 能获取到病毒蛋白红外光谱(1500-1750 cm-1范围 Amide I 和Amide II 峰);

    5. nano-FTIR 能获取到病毒的脂类、磷酸盐和RNA的红外光谱(1290-1050 cm-1范围)。


    图3 流感病毒的neaSNOM近场光学红外成像 (pH 7.4) a):实验示意图;b):病毒形貌成像(标尺 100 nm);c-e):不同红外波长下近场光学相位成像(红外吸收);f) 和 g):b,c)和 b, e)红色虚线相应的截面分析


    图4 流感病毒的nano-FTIR光谱及高光谱成像(pH 7.4)A):nano-FTIR红外吸收光谱(pH 7和pH 5); B):病毒形貌及高光谱成像(标尺 100 nm)

     

        综上所述,在该研究工作中,作者对单个流感病毒颗粒进行了光谱和成像实验,研究了各种pH值变化环境中以及与抗病毒化合物相互作用时病毒蛋白和脂质双层的化学和结构变化。结果表明在不存在靶细胞膜的情况下,降低pH环境依然会造成病毒包膜破裂,这与当前的病毒融合模型相反。此外,融合YZ剂化合物136可以有效阻止低pH环境引起的病毒包膜破坏。除流感病毒外,德国neaspec公司提供的nano-FTIR和neaSNOM技术同样可能适用于其他包膜病毒(例如,HIV、冠状肺炎病毒等)的研究,并能为基础病毒学研究提供新思路

     

    参考文献:

    [1]Sampath Gamage, Yohannes Abate et al., Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging, PLOS ONE https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199112


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

应用ZT|纳米分辨傅里叶红外光谱与成像技术(nano-FTI

    许多包膜病毒诸如人类免疫缺陷病毒(即艾滋病毒,HIV),埃博拉病毒、流行性感冒病毒(IFV)和冠状肺炎病毒等致命性病毒对人类健康和公共卫生构成了持续的威胁。因此,关于病毒开展的各方面研究备受关注。其中,包膜病毒的细胞膜渗透行为是病毒进入宿主细胞,感染宿主细胞等一系列事件中的关键步骤。在病毒进入宿主细胞的过程中,包膜病毒如何与宿主细胞受体相互作用以及病毒膜包膜自身如何经历结构变化,Z终进入宿主细胞的病毒-细胞膜渗透行为的研究,能为开发新型抗病毒疗法和疫苗提供有利信息。


    近年来,流感病毒(IFV, 结构示意图1)已被用作包膜病毒的原型来研究病毒进入宿主细胞的过程。IFV中血凝素(HA)是嵌入IFV包膜的主要表面糖蛋白。 HA负责IFV与宿主细胞受体的连接,并在病毒进入过程中参与介导膜融合。众多研究已经为靶标和病毒膜之间的融合机制建立了一个公认的模型。该模型认为只有在靶标和病毒膜发生膜融合时才可形成孔从而介导病毒-细胞膜渗透行为。然而,其他报道也观察到在融合发生之前靶标和病毒膜的破裂。此外,关于腺病毒蛋白与宿主细胞的研究显示,宿主细胞膜可能在没有膜融合的情况下被破坏而进入病毒。另一方面,病毒包膜和靶宿主细胞膜具有不同的化学组成或结构,各个膜中形成孔的要求不同,因此靶宿主或病毒膜破裂也可能独立地被诱导。

图1 流感病毒示意图 (百度百科)


    综上所述,关于病毒-细胞膜渗透行为的机理还存在一定的争议,明确单个病毒与宿主细胞的复杂融合机制,可为设计抗病毒化合物提供有利信息。然而,常规的病毒整体融合测定法是对膜融合事件的集体响应,不能对细微、尤其是在纳米尺度复杂的融合细节进行直接和定量的研究,因此无法直接量化一些可以通过研究单个病毒、纳米尺度表面糖蛋白和脂包膜来获得的融合细节。例如,病毒感染过程在分子水平上引起的病毒膜和宿主细胞膜的化学和结构组成改变,可以通过分子特异性红外光谱技术来探测。然而,单个病毒、表面糖蛋白和脂包膜尺寸小于红外光的衍射极限,限制了单个病毒的红外光谱研究。因此,找到一个既可以提供纳米高空间分辨率,还能探测机械、化学特性(分子特异红外光谱)和环境影响的工具,使其可在单病毒水平上研究病毒膜融合过程是十分重要的。


    德国neaspec公司经多年研发的纳米分辨傅里叶红外光谱和成像系统(nano-FTIR & neaSNOM)采用ZL化的散射式核心设计和准外差技术以及独特的宽光谱高能激光器(光谱范围:650—4000 cm-1),基于传统傅里叶红外光谱的核心原理,使得光谱和成像信息直接源于光学信号,无需光-热、光-力等复杂信号的转换,能对空间分辨率低至10 nm的样品进行直接的红外光谱及成像测量,提供与传统傅里叶光谱完全一致的红外光谱测量结果。因此,德国neaspec公司的纳米分辨傅里叶红外光谱与成像系统可实现高分辨率单个病毒、表面糖蛋白和脂包膜的原位光谱、化学图谱和结构鉴定,以及病毒与环境触发因素和细胞的相互作用研究,是单病毒水平上研究病毒膜融合过程的wan美工具



图2 德国neaspec公司纳米分辨傅里叶红外光谱与成像系统( nano-FTIR & neaSNOM)实物图


    来自美国乔治亚大学和乔治亚州立大学的Sampath Gamage和Yohannes Abate等研究者采用 nano-FTIR & neaSNOM研究了单个原型包膜流感病毒X31在不同pH值环境中发生的结构变化。同时,还定量评估了在环境pH值变化期间,抗病毒化合物(化合物136)阻止病毒膜破坏的有效性,提供了一种YZ病毒进入细胞的新机制。


    nano-FTIR和neaSNOM对流感病毒 X31的近场红外光谱及成像研究提供了高空间分辨的优异光谱和成像结果,具体结果如下:

  1. 能清楚观察到单个流感病毒的形貌(高度20-30 nm, 大小约70-100 nm);

  2. 不同红外波长下病毒红外吸收对比明显;

  3. HA富集在病毒包膜外(对比图3 中f和g:包膜外1088 cm-1无红外吸收信号,1659 cm-1 有红外吸收信号,蛋白质在1659 cm-1 有吸收而在1088 cm-1没有);

  4. nano-FTIR 能获取到病毒蛋白红外光谱(1500-1750 cm-1范围 Amide I 和Amide II 峰);

  5. nano-FTIR 能获取到病毒的脂类、磷酸盐和RNA的红外光谱(1290-1050 cm-1范围)。


图3 流感病毒的neaSNOM近场光学红外成像 (pH 7.4) a):实验示意图;b):病毒形貌成像(标尺 100 nm);c-e):不同红外波长下近场光学相位成像(红外吸收);f) 和 g):b,c)和 b, e)红色虚线相应的截面分析


图4 流感病毒的nano-FTIR光谱及高光谱成像(pH 7.4)A):nano-FTIR红外吸收光谱(pH 7和pH 5); B):病毒形貌及高光谱成像(标尺 100 nm)

 

    综上所述,在该研究工作中,作者对单个流感病毒颗粒进行了光谱和成像实验,研究了各种pH值变化环境中以及与抗病毒化合物相互作用时病毒蛋白和脂质双层的化学和结构变化。结果表明在不存在靶细胞膜的情况下,降低pH环境依然会造成病毒包膜破裂,这与当前的病毒融合模型相反。此外,融合YZ剂化合物136可以有效阻止低pH环境引起的病毒包膜破坏。除流感病毒外,德国neaspec公司提供的nano-FTIR和neaSNOM技术同样可能适用于其他包膜病毒(例如,HIV、冠状肺炎病毒等)的研究,并能为基础病毒学研究提供新思路

 

参考文献:

[1]Sampath Gamage, Yohannes Abate et al., Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging, PLOS ONE https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199112


2020-03-16 14:28:34 602 0
红外光谱和傅里叶转变红外光谱的区别
 
2018-04-01 02:54:10 535 1
傅里叶红外光谱如何进行透射测试
 
2018-11-28 02:39:07 391 0
盘点傅里叶红外光谱仪应用行业

傅里叶红外光谱仪是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

 

下面上海尔迪仪器科技有限公司给大家详细介绍傅里叶红外光谱仪应用行业

 

1、在石油化学研究中的应用

 

傅里叶红外光谱仪在石油化学中的应用是一个十分广泛的领域,如在重油的组成、性质与加工方面,应用IR表面自硅胶色谱得到的胶质和沥青质。红外光谱仪在润滑油及其应用方面的进展体现在:用于鉴别未知油品和标定润滑油的经典物理性质(如粘度、总酸值、总碱值);被纳入以设备状态监测为目的的油液分析计划,用于表征在用油液的降解和污染程度;油润滑表面摩擦化学过程及产物的原位监测与表征。

 

傅里叶红外光谱仪应用于轻质油品生产控制和性质分析方面的主要进展包括:应用红外光谱预测汽油的辛烷值,应用IR测定汽油中含氧化合物的含量。此外,还应用ATR FT-IR与GC联用测定汽油中的芳烃的含量。

 

2、医药领域  

 

现代药物学在对新药物进行研制时不外乎两种方法,一种是根据基础化合物进行合成,另一种是从动植物中提取改良。药物的结构决定性质,对于得到的新药物最基本的步骤是分析其结构和组成,傅里叶红外光谱仪能够出色的辅助人们完成这方面的工作。  

 

3、在临床医学的应用

 

傅里叶红外光谱仪在临床疾病检测方面也有广泛的应用,如利用红外光谱法对冠心病、动脉硬化、糖尿病、癌症的检测。

 

4、刑侦鉴定

 

在案发现场中,通过犯罪现场勘查可以发现许多未知种类的纤维,而这些纤维中却可能保存着大量的犯罪信息。通过对未知纤维的检验和鉴定,能够掌握犯罪嫌疑人与犯罪现场关系、犯罪嫌疑人与受害人的关系以及对犯罪嫌疑人的同一认定。纤维一般是由单体化合物聚合而成的,且各类纤维的分子结构不同。傅里叶变换红外光谱仪能够根据纤维所含基团的红外吸收峰来确定未知纤维的种类。方法简单迅速且不破坏检材。

 

上海尔迪仪器科技有限公司有售bruker傅里叶红外光谱仪VERTEX 80/80v、VERTEX 70v ,可以助力进行诸多高难度试验,如高分辨率、超快速扫描、步进扫描或紫外光谱范围测量。如果有需要可以联系我公司!


2022-06-15 14:39:51 428 0
傅里叶红外光谱可不可以用于水果的无损检测
 
2016-08-02 17:50:28 329 1
全反射傅里叶红外光谱文件用什么打开
 
2016-05-01 00:22:06 298 1
傅里叶红外光谱仪
傅里叶红外光谱仪FTIR-8300型号外面那个黑框框里面到底是什么元件,求指导啊,谢谢!
2014-09-28 05:07:44 340 1
第四届“计算成像技术与应用”ZT研讨会WM落幕

2020年11月7日-8日,由西安电子科技大学与华侨大学等多家单位联合主办的第四届“计算成像技术与应用”ZT研讨会在厦门WM落幕。此次会议参会人数高达500余人,现场座无虚席,人气火爆。本届会议主题为:计算成像,一切皆有可能。

自2017年, “计算成像技术与应用”ZT研讨会至今已成功举办四届,每届会议都在行业内产生重大影响,这更像是整个计算成像技术研究人员的“年会”,平均每届与会人员达到三百多人,本次会议更是达到了参会人数的历史新高,这也反应了行业的不断发展与壮大,凌云光也作为重要支持单位连续两年参加会议。

凌云光与计算成像 

2013年,凌云光&清华大学共同建立了北京市多维多尺度计算摄像学实验室,2016年、2017年、2018年,以实验室为依托连续三年举办了 “多维多尺度计算摄像学产业及应用创新大会”,获得专家学者的认可,受到各界行业专家学者的关注和支持。一直以来,凌云光持续关注计算成像技术发展,并应用到公司的技术研究、产品创新以及客户需求中,以推动行业发展为己任,不断学习与创新。

本次会议,凌云光技术股份有限公司总裁助理杨影女士基于公司20多年在视觉图像领域的经验,以“视觉让生活更美好”为题介绍了推动光学测试仪器发展的一个重要的目标就是不断追求:要看得见、然后看得清楚、ZH看得准确和明白。目前成像器件正按照:高分辨率、全光谱范围、高速与高灵敏、高动态范围、3D 立体等 5 个纬度不断提高,提供超过人类视觉极限的成像能力,改善我们的生活。

报告还与各位专家学者分享了近年来,依托“计算成像技术”凌云光在工业、立体视觉、生命科学等方向进行了深入研究与探索,更是与清华大学、上海微系统所、南京大学等科研单位深度合作,创新设计了多款视觉器件和科研仪器。杨影总也表示,凌云光会继续努力与各位专家学者一起推动计算成像技术的发展。

<span style="box-sizing: border-box; color: rgb(136, 136, 136);" 255);"="" 255,="" rgb(255,="" normal;="" justify;="" 0.544px;="" 14px;="" sans-serif;="" arial,="" yahei",="" ui",="" yahei="" "microsoft="" gb",="" sans="" "hiragino="" sc",="" "pingfang="" neue",="" helvetica="">▲凌云光技术股份有限公司总裁助理杨影女士报告《视觉让生活更美好》

部分精彩报告回顾

此次会议组委会邀请了国内计算成像领域的知名专家和学者到会交流,针对计算成像领域的前沿技术和ZX研究成果深入探讨,旨在促进计算成像技术发展,为相关领域人员提供交流新思想、切磋新技术的舞台,促进相关学科的科技创新和成果转化,提高计算成像研究方向的教学科研水平及计算成像研究在光电成像技术领域的影响力。


历时两天,本次研讨会落下帷幕,各位参会者收获颇丰,在会议结束时主办单位西安电子科技大学邵晓鹏教授也表示:开展本次研讨会的宗旨是为了激励更多的人参与到计算成像中来,带着开放包容的心态,将“蛋糕”做大。华侨大学蒲继雄教授表示了对邵晓鹏教授的感谢,认为本次参会的学生将是计算成像界的未来,并祝福他们的未来灿烂发光。

凌云光也将和各位专家一起,以推动计算成像技术的发展和应用为使命,继续走在计算成像技术探索的道路上,期待下一届“计算成像技术与应用”ZT研讨会的举行!


2020-11-20 14:13:16 395 0
傅里叶脉冲核磁共振

傅里叶脉冲核磁共振

傅里叶脉冲核磁共振实验仪利用物理学方法将抽象的理论运用多媒体进行展示,使人们能够直观地了解到其成像效果,进而可以使我们迅速了解磁共振的成像原理。

傅里叶脉冲核磁共振原理

傅里叶脉冲核磁共振实验仪由多个部分组成,主要包括了磁铁、探头、开关放大器以及相位检波器等。探头内部主要包括了梯度线圈与射频线圈,其中,探头内部的梯度线圈能够实现空间相位编码和频率编码,而探头内部的射频线圈主要是将样品放入到射频线圈中,这样一方面能够达到旋转磁场的目的,另一方面还能够观察自由旋进信号的发射线圈和接收线圈。在观察自由旋进信号的时候,可以采用开关放大器将探头内的射频线圈与相位检波器进行连接,接下来,可以利用振荡器与射频脉冲发生器,从而获得相应的相位检波器与射频脉冲的射频基准。但是如果在采集上存在困难,那么可以利用相位检波器获得比较容易采集的低频信号。蕞终可以得到脉冲核磁共振成像所需要的相位精度。

傅里叶脉冲核磁共振实验仪的磁体主要是采用微米精度加工技术而实现的,因此,通常情况下它的磁场均匀度相对比较高。同时,脉冲核磁共振成像实验仪利用恒温控制器对磁铁进行控制,因此,其稳定性比较高。此外,在DDS技术的支持下,射频电路的工作频率不仅具有较高的稳定度,同时还能够进行较大范围且高分辨率调节。

傅里叶脉冲核磁共振的整个过程中,如果进行加载脉冲的操作,那么实际上就是脉冲的受激吸收过程。与此同时,可以发现,脉冲自由衰减的时候属于自发式辐射,同时还会出现受激辐射的现象。

傅里叶脉冲核磁共振成像技术已经广泛地应用于生物、医学以及物理学中,脉冲核磁共振实验仪不仅使人们了解到共振现象及各种脉冲序列的相关原理,同时也使人们充分认识到磁共振成像、成像原理及图像重建的数学处理方法。从而使人们对磁共振成像技术有一个更深入的认识。

2022-07-27 09:49:10 130 0
傅里叶导热定律
不要百度百科,有没有学传热学的人,请问原定义是怎么描述的?还有q=kdt/dx这个公式中Q的单位是什么?
2017-11-25 13:40:13 262 1
傅里叶红外光谱仪,中药二氧化硫测定仪的应用

   傅里叶红外光谱仪,中药二氧化硫测定仪,红外光谱仪,一般把红外光谱仪放在以上的环境中测浓度有:仪器扩大无法测量的定量红外药物浓度,仪器无法测量的定量红外混合物浓度,定量红外观察药物的荧光结构特征,和定量的中药样品浓度仪器扩大无法测量的红外吸收谱线能量不同。


    光谱仪和红外光谱仪的能量一般来说,光谱仪比红外光谱仪能量高。


    因为光谱仪在红外光谱仪上有一个滤光片,能够滤掉大部分紫外光。所以红外光谱仪,特别是扩展的红外光谱仪能量高。应用的话,用红外光谱仪配红外光编码。


    比如降血糖,要求红外光谱仪有很好的波长组合。可以用紫外光解你的红糖,根据组合下来看,看糖中含多少糖。这个图是14年的调查,结果用的是三个红外光谱仪,滤除了一半的紫外光。


    还有一个白光光谱仪。同时滤除了红外光,也滤除了一半的紫外光。结果是100%的降血糖。


    紫外光用来检测中药,也可以用来检测中药制剂,反正怎么方便怎么来。而红外光谱仪配光,根据波长组合,可以筛选出很多代表性的靶药。大体上,要求你针对的方向,靶药数量等等,用红外光谱仪才靠谱。


    上面只是一个参考,使用的时候,还是看实验室。***用红外光谱仪,因为红外光谱仪的光源可以很多可以选择,***选择光谱仪可以精确测量紫外辐射或可见辐射的那种。


    这么说可能有点拗口,其实就是因为光谱仪的可以读出光谱曲线,紫外光谱仪也可以读出光谱曲线,两者可以测的那个光谱曲线是一样的。另外,相对于数字红外光谱仪,光谱仪测的是物质的原子或分子整体。数字红外光谱仪测得的是物质整体或某种特定区域,红外光谱仪测得的是光谱区域里面物质的全体。


    所以光谱仪更好用,光谱仪是光谱仪里面分析,数字光谱仪是数字光谱仪里面分析。


    成像方式不同原理不同根据光谱仪的光谱成像原理可以将光谱仪分为工作光谱成像和非工作光谱成像。工作光谱成像就是由被测物自身发出不同频率的光,要测物的表面处有多少个光脉点或者多少个光辐射,把测物的不同位置和不同波长的光作为一组光脉点和光辐射,根据一组光脉点和光辐射所成像的位置来测量单个光脉点和光辐射量,如果所测物表面上没有光脉点,那么就测不出光脉点和光辐射量。


    这种方法比较耗时,对光线的选择也有一定的要求。所以不适合工作光谱成像。非工作光谱成像就是没有反射现象,测物表面上只有沿光谱边缘的一点光。


    在可见光谱区从出发点经主光波段1~2000,红光波段从300~500的一段特定区域作为光源发射光对于每个光源根据物质不同含量,不同吸收量作为主光。


2021-10-27 10:39:49 391 0
千眼狼“硬核技术”亮相第四届“计算成像技术与应用”ZT研讨会

      11月7日,第四届“计算成像技术与应用”ZT研讨会在厦门顺利举办。会议邀请国内计算成像领域数百名专家学者到会共同交流,深入探讨计算成像领域前沿技术和ZX研究成果。富煌君达携千眼狼高速摄像仪及多款“硬核”解决方案亮相,创始人吕盼稂研究员作为高速图像测量领域ZS专家受邀参会,并作精彩报告。


   

      本届会议以 “计算成像,一切皆有可能”为主题,旨在促进计算成像技术发展,为相关领域人员提供交流新思想、切磋新技术的舞台,促进相关学科的科技创新和成果转化,提高计算成像研究方向的教学科研水平及计算成像研究在光电成像技术领域的影响力。



      会上,吕盼稂研究员应邀作《高帧频图像在计算成像中的应用》ZT报告,分享了高速图像测量技术中的ZX研究成果,并围绕高帧频图像如何提升计算成像质量和效率展开,介绍高速摄像仪在计算成像技术中的实际应用案例。



      不少专家学者与吕盼稂研究员共同探讨高速摄像仪和高速图像测量应用解决方案在计算成像中的成熟应用案例,并表示国产高速摄像仪在计算成像领域中作用越来越重要,希望今后能有更多交流合作的机会。



       本次大会千眼狼展区向参会人员展示了高速摄像仪及应变场测量应用解决方案、目标轨迹测量应用解决方案、流场测量应用解决方案等,吸引不少参会专家学者驻足关注。参观人员现场咨询高速摄像仪相关功能,并与工程师探讨产品在人工智能与计算成像领域中的应用。



应变场测量应用解决方案

      通过追踪物体表面的散斑图像(全场各特征点),实现变形过程中物体表面的三维坐标、 位移及应变的动态测量,支持计算坐标位移、分析距离夹角、弹性模具、泊松比等专业数据,支持与载荷仪通信,直观显示载荷与应变形态的对应关系。



目标轨迹测量应用解决方案

方案通过高速摄像机捕捉高速目标运动过程,跟踪运动物体特征点,利用千眼狼图像测量分析软件进行测量特定点的位移、速度、加速度等数据。



流场测量应用解决方案

方案由两台高清高速摄像机、激光器、同步触发器、分析软件组成。在片激光光源作用下,选用适当的示踪粒子均匀布撒在流体中,随湍流、涡流运动,通过高速相机捕捉跟踪示踪粒子的运动轨迹,来呈现湍流、涡流的运行姿态。



       富煌君达千眼狼秉承自主创新研发的精神,多年来一直深耕高速图像测量技术,通过在科研院所、、工业等领域中的实战经验,产品与技术研发更加成熟。此次参会也希望得到更多领域专家们的认可,我们将不断努力,继续创新研发,为我国计算成像技术不断发展贡献力量。


2020-11-09 10:15:52 344 0
傅里叶红外光谱仪的应用领域

基于傅里叶变换干涉后的红外光原理,傅里叶红外光谱仪可以分析物质的键合和结构,并能对样品进行定性和定量分析,并以其优异的性能能够胜任大量的分析工作,国内专业的傅里叶红外光谱仪可应用于哪些领域?


傅里叶红外光谱仪可用于哪些领域?


1.化学和制药领域


在现代药理学中,新药的开发只有两种方法,一种是根据基本化合物进行合成,另一种是从动植物中提取和改进药物。药物的结构决定了药物的性质。新药最基本的步骤是分析其结构和成分,傅里叶变换红外光谱(FTIR)可以帮助人们完成这一领域的工作。


2.煤和石油分析领域


傅里叶变换红外光谱可以检测有机质中官能团的类型和含量,从而得到混合物中某些有机物的含量,这对于煤和石油工业来说是非常重要的,有机质的含量一直是煤和石油开采的标准,利用傅里叶变换红外光谱仪可以直接检测有机质的种类和含量,进而判断其是否具有开采价值。


3.刑事调查和评估领域


傅里叶变换红外光谱仪也被用于刑事侦查和鉴定领域。在化学合成技术不断发展的今天,药物种类繁多,也给鉴别工作带来了困难。为了确定未知物质是否会产生幻觉,只需用傅里叶变换红外光谱对未知物质进行分析,并与已知药物的红外光谱进行比较。通过测量晶格宝石的晶格结构,并根据标准晶格宝石的数据比较,确定其是否为真正的宝石。


傅里叶红外光谱仪具有精确性和易用性两大特点,能够胜任医学刑事侦查等多个领域,由于某些检测要求严格,傅里叶红外光谱仪可以充分发挥其精度特性,除上述领域外,还可应用于卫生检疫、食品、环境保护、光学涂层等领域,并在这些领域发挥着巨大的作用。

2020-08-14 16:40:28 639 0
傅里叶红外光谱仪的主流产品
 
2018-12-02 13:09:23 341 0
傅里叶红外光谱仪的用处
大家好,我现在做一个实验需要用到傅里叶红外光谱仪,但是我没弄明白这个仪器测试出来后能否得到我想要的结果,我知道仪器能够根据官能团的组合得出样品的成分,但是我现在测量的是个混合物的样品,能否测到这个混合物中样品的各个成分比重,能否测到混合物中... 大家好,我现在做一个实验需要用到傅里叶红外光谱仪,但是我没弄明白这个仪器测试出来后能否得到我想要的结果,我知道仪器能够根据官能团的组合得出样品的成分,但是我现在测量的是个混合物的样品,能否测到这个混合物中样品的各个成分比重,能否测到混合物中各个元素占比,希望做过类似实验或者知道结果的朋友能慷慨相助,小弟不胜感激! 展开
2013-08-13 03:01:19 930 2
傅里叶红外光谱仪的技术参数
 
2018-12-03 22:25:48 312 0
傅里叶红外光谱仪的基本原理
 
2018-12-02 11:01:38 370 0
傅里叶用在紫外可见光谱和红外光谱有什么不同
 
2018-12-17 09:35:13 251 0
傅里叶红外检测器使用的技术原理是什么呢?

在对样品进行定性与定量分析时,例如医药化工、宝石鉴定、地矿、石油、煤炭、环保、海关、刑侦鉴定等领域,经常会用傅里叶红外光谱仪来进行检测分析,而其所利用的技术是傅里叶转换红外光谱,不少人了解仪器的原理,那么其使用的技术,又了解多少呢?
 

  关于傅里叶转换红外光谱
 

  傅里叶转换红外光谱 (FTIR)是一种用来获得固体, 液体或气体的红外线吸收光谱和放射光谱的技术。傅立叶转换红外光谱仪同时收集一个大范围范围内的光谱数据。这给予了在小范围波长内测量强度的色散光谱仪一个显著的优势。FTIR已经能够做出色散型红外光谱,但使用的并不普遍(除了有时候在近红外),开启了红外光谱新的应用。傅立叶转换红外光谱仪是源自于傅立叶转换(一种数学过程),需要将原始数据转换成实际的光谱。
 

  傅里叶转换红外光谱种类
 

  根据红外光的分类,傅里叶转换红外光谱也可以分为以下几种:

  近红外光FTIR:近红外光区域介于波长从岩盐区域到可见光的起始(约在750nm)。从基本振动的泛频上可以观察到此区域。它主要应用在工业上,如化学影像和流程控制。

  中红外光FTIR:随着廉价微电脑的出现,使得能有专门用于控制光谱仪、收集数据、进行傅里叶转换和光谱呈现的电脑得以出现。这促进了在岩盐区域的FTIR分光光度计的发展。然而,制造超高极ng确度的光学零件和机械零件却是必须克服的问题。广泛被使用的器具现在可以在市面上买到。虽然在仪器的设计上越来越复杂,但是基本原理仍然保持相同。如今,干涉仪上的移动镜以相同的速度移动且干涉图的取样会位于被氦-氖激光所点燃的二次干涉的边缘发现通过零交叉点所触发。这赋予了高波数下从红外光谱上所得到结果的极ng确度并避免波数校准错误。

  远红外光FTIR:一开始,FTIR分光光度计是使用在远红外光的范围上。这么做是因为考虑到了良好光学性能所需求的机械耐用度,这也关系到了光波长的选用。
 

  傅里叶近红外检测器原理
 

  光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,Z终得到透过率或吸光度随波数或波长的红外吸收光谱图。
 

  傅里叶近红外检测器的优点
 

  作为一款分析仪器, 傅里叶近红外检测器有三个突出的特点:
 

  1、 扫描速度快:傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。

  2、 信噪比高:傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。

  3、 重现性好:傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。


2020-04-28 10:46:56 538 0

10月突出贡献榜

推荐主页

最新话题