仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

资讯中心

当前位置:仪器网> 资讯中心>量子光学问鼎2022年度诺贝尔物理学奖!

量子光学问鼎2022年度诺贝尔物理学奖!

来源:罗辑技术(武汉)有限公司      分类:商机 2022-10-08 14:05:54 175阅读次数

2022年诺贝尔物理学奖重磅揭晓,量子光学问鼎!北京时间10月4日17时45分,诺贝尔奖委员会宣布将2022年度诺贝尔物理学奖授予阿兰·阿斯佩(Alain Aspect )教授、约翰克劳瑟(John F. Clauser)教授、 塞林格(Anton Zeilinger)教授,以表彰他们对于量子光学和原子物理方面的实验研究工作,尤其是在验证贝尔不等式方面先驱性的工作。 值得一提的是,这是继2018年美国科学家Arthur Ashkin、法国科学家Gerard Mourou和加拿大科学家Donna Strickland因在激光物理领域取得突破性发明获奖之后,时隔4年、诺贝尔物理学奖再次花落光学领域,可喜可贺!

阿兰·阿斯佩(Alain Aspect ),1947年6月出生于法国西南部阿基坦地区的阿根镇。他毕业于法国的一所地区性大学奥赛大学。1983年,他获得奥赛大学博士学位。阿斯佩是巴黎著名的国家科学研究中心(CNRS)的研究主任。他曾获得了2010年沃尔夫物理奖、2012年的爱因斯坦奖章等荣誉奖励。 约翰·克劳瑟(John F. Clauser),1942年出生于加利福尼亚州帕萨迪纳市。1964年,他他获得了加州理工学院物理学学士学位,两年后获得物理学硕士学位,并Z终在1969 年获得了哥伦比亚大学物理学博士学位。塞林格(Anton Zeilinger),1945年出生于奥地利,1971年在维也纳大学获得博士学位。他曾在维也纳技术大学和因斯布鲁克大学任教,1999年加入维也纳大学并担任物理系教授。现任奥地利科学院院长。

在量子世界中,两个“纠缠”的粒子,无论被分隔到多么遥远,都可以保持联系,并瞬时共享它们的物理状态。爱因斯坦曾将这种神秘的现象称之为“鬼魅般的超距作用”。

今年的诺贝尔物理学奖的三位获奖人Alain Aspect、John Clauser和Anton Zeilinger各自利用纠缠量子态进行了开创性的实验。他们的研究结果为目前为基于量子信息的新技术奠定了基础。

现如今,与量子力学的应用有关的研究领域已经变得非常庞大,这包括量子计算机、量子网络,以及安全的量子加密通信。这一进展的一个关键便是,量子力学允许两个或多个粒子处于纠缠态中。

在很长一段时间里,物理学家都在思考,这种相关性是否与纠缠对中的粒子包含隐变量有关。所谓隐变量,指的是能告诉它们在实验中应该给出什么结果的指令。

20世纪60年代,约翰·贝尔(John Stewart Bell)提出了以他的名字命名的数学不等式。这个不等式表明,如果存在隐变量,那么大量测量结果之间的相关性,将永远不会超过某个值。然而,量子力学预测,某种类型的实验将违反贝尔不等式,从而产生比其他情况更强的相关性。

量子力学的纠缠对可以比作一台机器,它向着相反方向抛出反色的球。当鲍勃抓到一颗球,并看到它是黑色的时,他就立刻知道爱丽丝抓到了一颗白色的球。在一种使用隐变量的理论中,这些球总会包含着关于颜色的隐藏信息。但是,量子力学认为,这些球都是灰色的,直到有人看到它们时,其中一颗会随机变成白色,另外一颗则变成黑色。贝尔不等式表明,有一些实验能够区分这些情况。这类实验已经证明了,量子力学的描述才是正确的。

Clauser延续了贝尔的想法,并进行了一项实际的实验。当他进行测量时,结果显然违反了贝尔不等式,从而支持了量子力学。这意味一个使用隐变量的理论无法取代量子力学。

John Clauser使用钙原子,在他借助一种特殊的光照亮粒子后,钙原子可以发射纠缠光子。他在两边分别安置了一个过滤器,来测量光子的偏振。经过一系列测量,他能够证明它们违反了贝尔不等式。

在Clauser完成他的实验之后,仍然有一些漏洞存在。Aspect对装置进行了改进,从而弥补了其中的一个重要漏洞。利用他的装置,他能够在一个纠缠对离开它的源后切换测量设置,所以当它们被发射时存在的设置不会对结果产生影响。

Alain Aspect 开发了这项实验,他用一种新的方法激发原子,让它们以更高的速率发射纠缠光子。他还能够在不同设置之间切换,因此这个系统不会包含任何可能影响结果的预先信息。

通过精密的工具和一系列的实验,Zeilinger开始使用纠缠量子态。此外,他的研究小组还展示了一种被称为量子隐形传态的现象,使得在一定距离上将量子态从一个粒子移动到另一个粒子成为可能。

Anton Zeilinger后来对贝尔不等式进行了更多测试。他将激光对准一种特殊的晶体,创造了光子纠缠对,并使用随机数在测量设置之间切换。一项实验利用了来自遥远星系的信号来控制过滤器,并确保信号不会相互影响。

这些研究和实验为当前量子信息科学的密集研究奠定了基础。能够操纵和管理量子态及其属性,使我们能够发展出具有意想不到的潜力的工具。这是量子计算、量子信息的传输和存储,以及量子加密算法的基础。这些日益完善的工具使我们更加接近那些现实的应用。

第一次量子革命给我们带来了晶体管和激光,现在,在这些用来操纵纠缠粒子系统的现代工具的帮助下,我们正在进入一个新的量子信息时代。


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

推荐阅读

版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

作者简介:[详细]
最近更新:2024-10-14 10:16:52
关注 私信
更多

最新话题

最新资讯

作者榜