仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

产品中心

当前位置:仪器网>产品中心> 北京北广精仪仪器设备有限公司>介电常数>高频介电常数测试仪>陶瓷薄膜介电常数测试仪
收藏  

陶瓷薄膜介电常数测试仪

立即扫码咨询

联系方式:400-855-8699转8003

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

为您推荐

产品特点

陶瓷薄膜介电常数测试仪西林电桥变压器电桥,恒载校正虚线:与Cm并联形成一个高电阻(当A超前于11时)变压器电桥,当既滞后于V时的补偿(用绕组仏)检测器并联T型网络的电路原理图并联T型网络的实际线路图谐振法的电路图

详细介绍

陶瓷薄膜介电常数测试仪信号源频率覆盖范围

频率范围CH1:0.1~0.999999MHz, CH2: 1~9.99999MHz,
CH3:10~99.9999MHz, CH1 :100~160MHz,
5.Q合格指示预置功能:      预置范围:5~1000。
6.B-测试仪正常工作条件
a.  环境温度:0℃~+40℃;
b.相对湿度:<80%;
c.电源:220V±22V,50Hz±2.5Hz。
7.其他
a.消耗功率:约25W;
b.净重:约7kg;
c. 外型尺寸:(l×b×h)mm:380×132×280。

1  测量范围及误差

 本电桥的环境温度为20±5℃,相对湿度为30%-80%条件下,应满足下列表中的技术指示要求。

  在Cn=100pF    R4=3183.2(W)(即10K/π)时

    测量项目       测量范围             测量误差               

    电容量Cx       40pF--20000pF      ±0.5%  Cx±2pF     

    介质损耗tgd      0~1              ±1.5%tgdx±0.0001

    在Cn=100pF      R4=318.3(W)(即1K/π)时

    测量项目       测量范围             测量误差               

    电容量Cx       4pF--2000pF      ±0.5%  Cx±3pF     

    介质损耗tgd      0~0.1          ±1.5%tgdx±0.0001

2  电桥测量灵敏度

    电桥在使用过程中,灵敏度直接影响电桥平衡的分辨程度,为保证测量准确度,希望电桥灵敏度达到一定的水平。通常情况下电桥灵敏度与测量电压,标准电容量成正比。在下面的计算公式中,用户可根据实际使用情况估算出电桥灵敏度水平,在这个水平上的电容与介质损耗因数的微小变化都能够反应出来。

 DC/C或Dtgd=Ig/UwCn(1+Rg/R4+Cn/Cx)   

         式中:U为测量电压                     伏特(V)

ω为角频率 2pf=314(50Hz)         

陶瓷薄膜介电常数测试仪

介电常数反映的是材料中电子的局域(local)特性,导电性是电子的全局(global)特征.不是一回事情的。

补充:电介质经常是绝缘体。其例子包括瓷器(陶器),云母,玻璃,塑料,和各种金属氧化物。有些液体和气体可以作为好的电介质材料。干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。

对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数介电常数,用于衡量绝缘体储存电能的性能.它是两块金属板之间以绝缘材料为介质时的电容量与同样的两块板之间以空气为介质或真空时的电容量之比。介电常数代表了电介质的极化程度,也就是对电荷的束缚能力,介电常数越大,对电荷的束缚能力越强。电容器两极板之间填充的介质对电容的容量有影响,而同一种介质的影响是相同的,介质不同,介电常数不同

介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角δ称为介质损耗角。

损耗因子也指耗损正切,是交流电被转化为热能的介电损耗(耗散的能量)的量度,一般情况下都期望耗损因子低些好。

概念:

电介质在外电场作用下,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,或简称介质损耗(diclectric loss)。介质损耗是应用于交流电场中电介质的重要品质指标之一。介质损耗不但消耗了电能,而且使元件发热影响其正常工作。如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。

形式

各种不同形式的损耗是综合起作用的。由于介质损耗的原因是多方面的,所以介质损耗的形式也是多种多样的。介电损耗主要有以下形式:

1)漏导损耗

实际使用中的绝缘材料都不是完善的理想的电介质,在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流,漏导电流流经介质时使介质发热而损耗了电能。这种因电导而引起的介质损耗称为“漏导损耗”。由于实阿的电介质总存在一些缺陷,或多或少存在一些带电粒子或空位,因此介质不论在直流电场或交变电场作用下都会发生漏导损耗。

2)极化损耗

在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的能量损耗。

  一些介质在电场极化时也会产生损耗,这种损耗一般称极化损耗。位移极化从建立极化到其稳定所需时间很短(约为10-16~10-12s),这在无线电频率(5×1012Hz 以下)范围均可认为是极短的,因此基本上不消耗能量。其他缓慢极化(例如松弛极化、空间电荷极化等)在外电场作用下,需经过较长时间(10-10s或更长)才达到稳定状态,因此会引起能量的损耗。

若外加频率较低,介质中所有的极化都能完全跟上外电场变化,则不产生极化损耗。若外加频率较高时,介质中的极化跟不上外电场变化,于是产生极化损耗。

电离损耗

电离损耗(又称游离损耗)是由气体引起的,含有气孔的固体介质在外加电场强度超过气孔气体电离所需要的电场强度时,由于气体的电离吸收能量而造成指耗,这种损耗称为电离损耗。

结构损耗

在高频电场和低温下,有一类与介质内邻结构的紧密度密切相关的介质损耗称为结构损耗。这类损耗与温度关系不大,耗功随频率升高而增大。

试验表明结构紧密的晶体成玻璃体的结构损耗都很小,但是当某此原因(如杂质的掺入、试样经淬火急冷的热处理等)使它的内部结构松散后。其结构耗就会大大升高。

宏观结构不均勾性的介质损耗

工程介质材料大多数是不均匀介质。例如陶瓷材料就是如此,它通常包含有晶相、玻璃相和气相,各相在介质中是统计分布口。由于各相的介电性不同,有可能在两相间积聚了较多的自由电荷使介质的电场分布不均匀,造成局部有较高的电场强度而引起了较高的损耗。但作为电介质整体来看,整个电介质的介质损耗必然介于损耗大的一相和损耗小的一相之间。

表征:

电介质在恒定电场作用下,介质损耗的功率为

  W=U2/R=(Ed)2S/ρd=σE2Sd

定义单位体积的介质损耗为介质损耗率为

ω=σE2

在交变电场作用下,电位移D与电场强度E均变为复数矢量,此时介电常数也变成复数,其虚部就表示了电介质中能量损耗的大小。

D,E,J之间的相位关系图

D,E,J之间的相位关系图

如图所示,从电路观点来看,电介质中的电流密度为

J=dD/dt=d(εE)/dt=Jτ+iJe

式中Jτ与E同相位。称为有功电流密度,导致能量损耗;Je,相比较E超前90°,称为无功电流密度。

定义

tanδ=Jτ/Je=ε〞/εˊ

式中,δ称为损耗角,tanδ称为损耗角正切值。

损耗角正切表示为获得给定的存储电荷要消耗的能量的大小,是电介质作为绝缘材料使用时的重要评价参数。为了减少介质损耗,希望材料具有较小的介电常数和更小的损耗角正切。损耗因素的倒数Q=(tanδ)-1在高频绝缘应用条件下称为电介质的品质因素,希望它的值要高。

工程材料:离子晶体的损耗,离子晶体的介质损耗与其结构的紧密程度有关。

紧密结构的晶体离子都排列很有规则,键强度比较大,如α-Al2O3、镁橄榄石晶体等,在外电场作用下很难发生离子松弛极化,只有电子式和离子式的位移极化,所以无极化损耗,仅有的一点损耗是由漏导引起的(包括本质电导和少量杂质引起的杂质电导)。这类晶体的介质损耗功率与频率无关,损耗角正切随频率的升高而降低。因此,以这类晶体为主晶相的陶瓷往往用在高频场合。如刚玉瓷、滑石瓷、金红石瓷、镁橄榄石瓷等

结构松散的离子晶体,如莫来石(3Al2O3·2SiO2)、董青石(2MgO·2Al2O3·5SiO2)等,其内部有较大的空隙或晶格畸变,含有缺陷和较多的杂质,离子的活动范围扩大。在外电场作用下,晶体中的弱联系离子有可能贯穿电极运动,产生电导打耗。弱联系离子也可能在一定范围内来回运动,形成热离子松弛,出现极化损耗。所以这类晶体的介质损耗较大,由这类品体作主晶相的陶瓷材料不适用于高频,只能应用于低频场合。

玻璃的损耗

复杂玻璃中的介质损耗主要包括三个部分:电导耗、松弛损耗和结构损耗。哪一种损耗占优势,取决于外界因素温度和电场频率。高频和高温下,电导损耗占优势:在高频下,主要的是由弱联系离子在有限范围内移动造成的松弛损耗:在高频和低温下,主要是结构损耗,其损耗机理目前还不清楚,可能与结构的紧密程度有关。般来说,简单玻璃的损耗是很小的,这是因为简单玻璃中的“分子”接近规则的排列,结构紧密,没有弱联系的松弛离子。在纯玻璃中加人碱金属化物后。介质损耗大大增加,并且随着加人量的增大按指数规律增大。这是因为碱性氧化物进人玻璃的点阵结构后,使离子所在处点阵受到破坏,结构变得松散,离子活动性增大,造成电导损耗和松弛损耗增加。

陶瓷材料的损耗

陶瓷材料的介质损耗主要来源于电导损耗、松弛质点的极化损耗和结构损耗。此外,表面气孔吸附水分、油污及灰尘等造成的表面电导也会引起较大的损耗。

在结构紧密的陶瓷中,介质损耗主要来源于玻璃相。为了改善某些陶瓷的工艺性能,往往在配方中引人此易熔物质(如黏土),形成玻璃相,这样就使损耗增大。如滑石瓷、尖晶石瓷随黏土含量增大,介质损耗也增大。因面一般高频瓷,如氧化铝瓷、金红石等很少含有玻璃相。大多数电陶瓷的离子松弛极化损耗较大,主要的原因是:主晶相结构松散,生成了缺固济体、多品型转变等。

高分子材料的损耗

高分子聚合物电介质按单体单元偶极矩的大小可分为极性和非极性两类。一般地,偶极矩在0~0.5D(德拜)范围内的是非极性高聚物;偶极矩在0.5D以上的是极性高聚物。非极性高聚物具有较低的介电常数和介质损耗,其介电常数约为2,介质损耗小于10-4;极性高聚物则具有较高的介电常数和介质损耗,并且极性愈大,这两个值愈高。

高聚物的交联通常能阻碍极性基团的取向,因此热固性高聚物的介电常数和介质损耗均随交联度的提高而下降。酚醛树脂就是典型的例子,虽然这种高聚物的极性很强,但只要固化比较完全,它的介质损耗就不高。相反,支化使分子链间作用力减弱,分子链活动能力增强,介电常数和介质损耗均增大。

高聚物的凝聚态结构及力学状态对介电性景响也很大。结品能链段上偶极矩的取向极化,因此高聚物的介质损耗随结晶度升高而下降。当高聚物结晶度大于70%时,链段上的偶极的极化有时完全被,介电性能可降至低值,同样的道理,非晶态高聚物在玻璃态下比在高弹态下具有更低的介质损耗。此外,高聚物中的增塑利、杂质等对介电性能也有很大景响。

介质损耗(dielectric loss )指的是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。

介质损耗因数(dielectric loss factor)指的是衡量介质损耗程度的参数。【依据标准】GB/T 16491、GB/T 1040、GB/T 8808、GB/T 13022、GB/T 2790、GB/T 2791、GB/T 2792、GB/T 16825、GB/T 17200、GB/T 3923.1、GB/T 528、GB/T 2611、GB/T 6344、GB/T 20310、GB/T 3690、GB/T 4944、GB/T 3686、GB/T 529、GB/T 6344、GB/T 10654、HG/T 2580、JC/T 777、QB/T 2171、HG/T 2538、CNS 11888、JIS K6854、PSTC-7、ISO 37、AS 1180.2、BS EN 1979、BSEN ISO 1421、BS EN ISO 1798、BS EN ISO 9163、DIN EN ISO 1798、GOST 18299、DIN 53357、ISO 2285、ISO 34-1、ISO 34-2、BS 903、BS 5131、DIN EN 12803、DIN EN 12995、DIN53507-A、DIN53339、ASTM D3574、ASTM D6644、ASTM D5035、ASTM D2061、ASTM D1445、ASTM D2290、ASTM D412、ASTM D3759/D3759M

功能介绍

1.自动停机:试样破坏后,移动横梁自动停止移动(或自动返回初始位置、

2.自动换档:根据试验力大小自动切换到适当的量程,以确保测量数据的准确性

3.条件模块:试验条件和试样原始数据可以建立自己的标准模块的形式存储;方便用户的调用和查看,节省试验时间

4.自动变速:试验过程的位移速度或加载速度可按预先编制、设定的程序自动完成也可手动改变

5.自动程制:根据试验要求,用户可方便的建立自己的试验模板(方法、,便于二次调用,可实现试验加载速度、应力、应变的闭环试验控制

6.自动保存:试验结束,试验数据和曲线计算机自动保存,杜绝因忘记存盘而引起的数据丢失

7.测试过程:试验过程及测量、显示、分析等均由微机完成

8.批量试验:对相同参数的试样,一次设定后可顺次完成一批试验

9.试验软件:中文Windows用户界面,操作简便

10.显示方式:数据与曲线随试验过程动态显示

11.曲线遍历:试验完成后,可对曲线进行放大再分析,用鼠标查到试验曲线上各点对应的数据

12.试验报告:可根据用户要求进行编辑打印

13.限位保护:具有程控和机械两级限位保护

14.过载保护:当负荷超过额定值3~5%时,自动停机

15.报告显示:自动和人工两种模式求取各种试验结果,自动形成报表,使数据分析过程变的简单,便于用户

16.添加试验方法:用户可跟据试验要求,添加试验方法

软件说明

a.软件系统:中英文Windows2000/XP/Win7平台下软件包

b.自动储存:试验条件、试验结果、计算参数、标距位置自动储存。

c.自动返回:试验结束后,试验机横梁会自动返回到试验初始位置。

d.连续试验:一批试验参数设定完成后,可连续进行测试。

e.多种曲线:同一图形上可显示多种不同的曲线:荷重--位移、荷重-时间、位移--时间、应力—应变、荷重—两点延伸等到多种曲线。

f.曲线对比:同组试样的曲线可在同一张图上叠加对比。

g.报告编辑:可按用户要求输出不同的报告形式。

h.动态显示:测试过程中,负荷、伸长、位移及选中的试验曲线随着测试的进行,实时动态显示在主控屏幕上。

i.自动变标:试验中负荷、伸长等曲线坐标,如果选择不当,可根据实测值的大小,自动变换座标。保证在任何情况下 曲线以大的形式显示在屏幕上。

j.峰值保持:在测试的整个过程中,测试项目的大值始终随着试验的进行,在屏幕窗口上显示。

k.执行标准:满足GB、ISO、JIS、ASTM、DIN等多种试验方法和标准。

试验机仪表:本仪表采用国际比较先进的放大器,A/D、微处理器、高性能高清晰的液晶显示屏构成,整个系统采用类似手机PDA键盘,光标导航,全中文显示,浮点数数据处理,结构简单操作方便,自动计算存储,适合于企业,质检单位材料力学仪表。

工作环境条件1 在室温100C~350C范围内,相对湿度不大于80%;2 在稳固的基础或工作台上正确安装,水平度为0.2/1000;3 在无震动、无腐蚀性介质和无较强电磁场干扰的环境中;4 电源电压的波动范围不应超出额定电压的±10%。

结构特征及工作原理

本机由机械、电气二大部分组成。

1机械部分结构及工作原理:

本机采用电动加载方式,底部是整机结构承载支架,内部包含有电机驱动器、加载电机、减速机构、动力传动机构等部件;上部是试样夹持及力值、位移测量机构,包含有试样拉伸夹具、测力传感器、位移传感器等主要部件。

2 电气部分:

    电气部分由显示测量控制部分组成。显示测量控制部分实现各种控制、显示、数据采集、处理等功能。软件部分的操作请仔细阅读《软件说明书》。

3 本机的几项主要功能:

3.1 全开放性参数设置

3.2 设置参数保存

3.3 浮动零点设置,可随时调整零点

3.4 峰值保持及存储,常值跟随;

3.5 在有效速度范围内,速度值任意设置;

3.6 横梁移动过程中的速度快捷切换功能

3.7 灵活的数据查询显示功能;

3.8 过载停机保护功能;

3.9 试验结束自动判断功能;

3.10 极限位置保护等;

本机采用机电一体化设计 ,主要由测力传感器、变送器、微处理器、负荷驱动机构、计算机及彩色喷墨打印机构成。它具有宽广准确的加载速度和测力范围,对载荷、位移的测量和控制有较高的精度和灵敏度,还可以进行等速加载、等速位移的自动控制试验。落地式机型 ,造型涂装均充分考量了现代工业设计,人体工程学之相关原则。

主要特点:采用进口光电编码器进行位移测量,控制器采用嵌入式单片微机结构,内置功能强大的测控软件,集测量、控制、计算、存储功能于一体。具有自动计算应力、延伸率(需加配引伸计)、抗拉强度、弹性模量的功能,自动统计结果;自动记录大点、断裂点、点的力值或伸长量;采用计算机进行试验过程及试验曲线的动态显示,并进行数据处理,试验结束后可通过图形处理模块对曲线放大进行数据再分析编辑,并可打印报表。

品质保证:3年保修,终身维护!

注意事项1、该仪器初始的包装材料需小心保存,安装需由本公司的专业技术人员进行操作。2、若仪器由于任何原因必须返修,必须将其装入原纸箱中以防运输途中损坏。3、在开机前,操作者要首先熟悉操作方法。

使用本机之前,请认真阅读使用说明书,充分理解之后,再开机使用。请爱护本机,正确使用,以便使该机永远保持较高的精度和良好的运行状态。

 

中国检测行业与验证服务的者和智领者,帮助众多检测质检单位和学校教研单位提供一站式的全面质量解决方案。

 

满足标准:GBT 1409-2006测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法准确度ALC ON 10% x设定电流 + 20μAALC OFF 6% x设定电压 + 20μADC偏置电压源电压 / 电流范围:0V—±5V / 0mA—±50mA分辨率:0.5mV / 5μA电压准确度:1% x设定电压 + 5mVISO ON:用于电感、变压器加偏置测试AC源内阻ISO ON:100ΩISO OFF:30Ω、50Ω、
电源电压:220V±20%,50Hz±2Hz功耗80VA体积(W×H×D): 280 mm × 88 mm × 370 mm(无护套),369 mm × 108 mm × 408 mm(带护套)。重量:约5kg将在以后的测试过程中进行开路校正计算。如果频率1,频率2。设置为OFF, 开路校正计算采用插入法所计算出的当前频率的开路校正数据。如果频率1,频率2 设置为ON, 同时当前测试频率等于频率1,频率2, 则频率1,频率2 的开路校正数据将被用于开路校正的计算。
平衡测试功能变压器参数测试功能测试速度:13ms/次电压或电流的自动电平调整(ALC)功能V、I 测试信号电平监视功能内部自带直流偏置源可外接大电流直流偏置源10点列表扫描测试功能30Ω、50Ω、100Ω可选内阻内建比较器,10档分选和计数功能内部文件存储和外部U盘文件保存测量数据可直接保存到U盘RS232C、 USB 、LAN、HANDLER、GPIB、DCI接口
选件,DCI与GPIB 只能2者选1通用技术参数工作温度, 湿度:0℃-40℃, ≤ 90%RH
列表扫描10点列表扫描可对频率、AC电压/电流、内/外DC偏置电压/电流进行扫描测试每扫描点可单独分选内部非易失性存储器:100组LCRZ仪器设定文件,201次测试结果外部USB存储器GIF图像LCRZ仪器设定文件测试数据USB存储器直接存储
接口I/O接口:HANDLER,从仪器后面板输出串行通讯接口:USB、RS232C并行通讯接口:GPIB接口(选件)网络接口:LAN存储器接口:USB HOST(前面板)偏置电流源控制接口DCI
技术参数显示器:480×RGB×272,4.3寸TFT LCD显示器。测试信号频率:20Hz—1MHz分辨率:10mHz,4位频率输入准确度:0.01%AC电平测试信号电压范围:10mV—2Vrms电压分辨率:100μV,3位输入准确度ALC ON 10% x设定电压 + 2mVALC OFF 6% x设定电压 + 2mV测试信号电流范围:100μA—20mA电流分辨率:1μA,3位输入
性能特点4.3寸TFT液晶显示中英文可选操作界面高1MHz的测试频率,10mHz分辨率
GDAT-S 的短路校正功能能消除与被测元件相串联的寄生阻抗(R, X)造成的误差。
移动光标至短路设定域,屏幕软键区显示下列软键。
短路校正功能操作步骤短路校正包括采用插入计算法的全频短路校正和对所设定的2 个频率点进行的单频短路校正。执行下列操作步骤利用插入计算法对全频率进行短路校正。
按软键 关 ,关闭开路校正功能。以后的测量过程中将不再进行开路校正的计算。短路校正
使用DCI接口可控制外部直流偏流源,偏置电流可达120A。

一、  概述

介质损耗和介电常数是各种电瓷、装置瓷、电容器等陶瓷,还有复合材料等的一项重要的物理性质,通过测定介质损耗角正切tanδ及介电常数(ε),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据;该仪器用于科研机关、学校、工厂等单位对无机非金属新材料性能的应用研究。

 

二、  测试原理

采用高频谐振法,并提供了,通用、多用途、多量程的阻抗测试。它以单片计算机作为仪器的控制,测量核心采用了频率数字锁定,标准频率测试点自动设定,谐振点自动搜索,Q值量程自动转换,数值显示等新技术,改进了调谐回路,使得调谐测试回路的残余电感减至低,并保留了原Q表中自动稳幅等技术,使得新仪器在使用时更为方便,测量值更为精确。仪器能在较高的测试频率条件下,测量高频电感或谐振回路的Q值,电感器的电感量和分布电容量,电容器的电容量和损耗角正切值,电工材料的高频介质损耗,高频回路有效并联及串联电阻,传输线的特性阻抗等。

 

本测试装置是由二只测微电容器组成,平板电容器一般用来夹持被测样品,园筒电容器是一只分辨率高达0.0033pF的线性可变电容器,配用仪器作为指示仪器,绝缘材料的损耗角正切值是通过被测样品放进平板电容器和不放进样品的Q值变化,由园筒电容器的刻度读值变化值而换算得到的。同时,由平板电容器的刻度读值变化而换算得到介电常数。

 

 

三、仪器的技术指标

1.Q值测量范围:2~1023

2.Q值量程分档:30、100、300、1000、自动换档或手动换档;

3.电感测量范围:自身残余电感和测试引线电感的自动扣除功能4.5nH-100mH 分别有0.1μH、0.5μH、2.5μH、10μH、50μH、100μH、1mH、5mH、10mH九个电感组成。

4.电容直接测量范围:1~460pF                                                

5.主电容调节范围: 30~500pF                                            

6.电容准确度 150pF以下±1.5pF;150pF以上±1%                                                                   7.信号源频率覆盖范围10KHz-70MHz (双频对向搜索  确保频率不被外界干扰)另有GDAT-C 频率范围10KHz-70MHz及200KHZ-160M

 

8、型号频率指示误差:1*10-6 ±1                                      

Q值合格指示预置功能范围:5~1000

Q值自动锁定,无需人工搜索

 

9.Q表正常工作条件

a. 环境温度:0℃~+40℃

b.相对湿度:<80%;

c.电源:220V±22V,50Hz±2.5Hz。

 

10.其他

a.消耗功率:约25W;   

b.净重:约7kg;   

c. 外型尺寸:(l×b×h)mm:380×132×280。

 

11.产品配置:

a.测试主机一台;

b.电感一套;

c.夹具一 套

 

四、性能特点:

1.    平板电容器

极片尺寸:φ25.4mm\φ50mm

极片间距可调范围和分辨率:≥10mm,±0.01mm

2.    园筒电容器

电容量线性:0.33pF / mm±0.05 pF

长度可调范围和分辨率:≥0~20mm,±0.01mm

3.  夹具插头间距:25mm±1mm

4.  夹角损耗角正切值:≤4×10-4(1MHz时)

5、数显电极

 

 

五. 维修保养

本测试装置是由精密机械构件组成的测微设备,所以在使用和保存时要避免振动和碰撞,要求在不含腐蚀气体和干燥的环境中使用和保存,不能自行拆装,否则其工作性能就不能保证,如测试夹具受到碰撞,或者作为定期检查,要检测以下几个指标:

1.    平板电容器二极片平行度不超过0.02mm。

2.    园筒电容器的轴和轴同心度误差不超过0.1mm。

3.    保证二个测微杆0.01mm分辨率。

4.    用精密电容测量仪(±0.01pF分辨率)测量园筒电容器,电容呈线性率,从0~20mm,每隔1mm测试一点,要求符合工作特性要求。

 

 

附表一,介质损耗测试系统主要性能参数一览表

 

BH916测试装置                                        GDAT高频Q表

 

平板电容极片 Φ50mm/Φ25.4mm                         可选频率范围10KHz-70MHz

 

间距可调范围≥15mm                                   频率指示误差3×10-5±1个字

 

夹具插头间距25mm±0.01mm                             主电容调节范围30-500/18-220pF

 

测微杆分辨率0.001mm                                  主调电容误差<1%或1pF

 

夹具损耗角正切值≦4×10-4 (1MHz)                    Q测试范围2~1023

 

附表二    电感组典型测试数据

 

 

如果e保持常数(已知电平)一个约定的电压表连于回路电容的两端,电压表的指示直接用回路Q的单位进行定标,从而能直接读出回路的Q值。

串联谐振电路中,有效电阻R,除被测电感有效电阻外,还包括Q表内部调谐电容器,指示电压表,宽带变压器和接线柱等损耗等效电阻值。所以Q表测得值将稍低于被测电感的实际的有效Q值。

基于上述理由,为了正确地测量元件的Q值,还需要考虑到测试回路中残余参数的影响。

本机测试回路中残余成分是很小的,对一般的测量可予忽略,即Q表指示

读得值等于被测元件的有效Q值。对测试频率高于10MHz,又要较高精确度时,需按均值进行修正。均值的高低能直接表征Q表自身回路的品质优劣。不能提供均值的Q表,其测得Q值的有效性不能得到确认。Q表修正值见第13页的表格。(1) Q量程键:开机默认状态为Q值手动量程(Manual)的MQ档。按Q量程键即为Q值自动量程(Auto),再按该键,又为手动量程。

(2) Q记忆键:按该键即能实现Q值自动记忆功能,此时显示屏上以较小字体 显示的Q值为调谐过程中的变化值,而Q值框内为谐振峰值,即Q值。

(3) Σ测量键:这是对绝缘材料进行介电常数(ε)和损耗角正切值(tanδ)测量的功能键。要完成该功能测量还需相应的测试夹具和调谐电感器的配合。

(4) Q预置键,当按键后,即能把当时显示的Q值作为预置值,以后当测试超过该值时,会显示“GO”并蜂鸣,表示超过原预置值。适宜于批量元件测试。

(5) 彩屏显示区,(见4.3显示屏示意图五)。

(6) 频率设置数字和小数点键共11个。。

(7) “SET”键,快速按一次该键,就进入频率值数字设置状态,通过11个数字和小数点键设置具体频率值,显示屏左上方显示设置的频率值,再按一次“SET”键,即完成频率数字设置。

(8) 信号输出端口:能输出测试信号,频率从1kHz至70MHz,幅值约50mV(1kΩ)。

(9) 当长按“SET”键后,频率显示会从四位数显改变为八位数显,其中一位数在闪变,这时调此频率调节旋钮,顺时针转动频率,反之,降低频率值。

(10) 频率调节粗细选择键,通过该二键选择,使频率调节旋钮的调节细度在合适的位置上。当功能键“Σ测量”启动时,其中“▶”键又复用为“NET”键。

(11) “MHz/kHz”频率单位选择键。

(12) USB通讯口座。

(13)  同轴慢转调谐旋钮,通过该旋钮仔细调谐达到谐振(即大Q值)。

(14) 测试回路接线柱:左边是电感器接线柱,右边是接电容器接线柱。

1 测试工作频率。

2 有效Q值显示,当Q记忆时为调谐过程中Q大值显示,即Q测得值。

3 调谐过程中Q变化值,显示调谐过程帮助操作者调谐用。

4 调谐电容值。

5 软件自动计算的有效L值。

6 Q预置值。

7 超过预置值的显示符号,同时发声。

8 Q量程显示。

9 Q量程手动或自动显示。

10 调谐中Q变化的百分比。

11 Q调谐指针。变压器介质损耗测试仪流体排出法

在电容率近似等于试样的电容率,而介质损耗因数可以忽略的一种液体内进行测量,这种测量与试 样厚度测量的精度关系不大。当相继采用两种流体时,试样厚度和电极系统的尺寸可以从计算公式中 消去.

 试样为与试验池电极直径相同的圆片,或对测微计电极来说,试样可以比电极小到足以使边缘效应 忽略不计。在测微计电极中,为了忽略边缘效应,试样直径约比测微计电极直径小两倍的试样厚度’

5. 1.2.3 边缘效应

为了避免边缘效应引起电容率的测量误差,电极系统可加上保护电极。保护电极的宽度应至少为 两倍的试样厚度,保护电极和主电极之间的间隙应比试样厚度小。假如不能用保护环,通常需对边缘电 容进行修正,表1给出了近似计算公式。这些公式是经验公式,只适用于规定的几种特定的试样形状。

此外,在一个合适的频率和

1— —温度计插孔s

2— —绝缘子s

3— —过剩液体溢流的两个出口 0

图3测■液体的两电极试验池示例1——温度计插孔《

2 1 mm厚的金属板彳

3——石英玻璃&

4 1 mm或2 mm的间隙;


相关产品

厂商推荐产品

在线留言

换一张?
取消