仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

应用方案

仪器网/ 应用方案/ BI-200SM研究级动静态光散射应用案例-6

立即扫码咨询

联系方式:400-822-6768

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

Amylose readily dissolves in hot water, unlike amylopectin which is largely insoluble. However, size distributions of amylose isolated in such a manner often show the presence of hyper-branched material consistent with amylopectin. The difference in solubility suggests that the hot-water-soluble (HWS) hyper-branched material might be structurally distinct from typical amylopectin. In the present paper, the structural properties of the two solubility fractions of hyper-branched material are explored in a set of traditional waxy rice varieties. The objective was to elucidate the nature of the HWS component, e.g. to see if it could be phytoglycogen, another water-soluble polysaccharide. We show that solubility is controlled by thermodynamic effects, rather than slow dissolution (kinetic effects). The average size, degree of branching and the debranched chain-length distributions indicate that the HWS fraction is structurally different from phytoglycogen. The debranched chain-length distributions of short chains and the degrees of branching in the HWS material are similar to those of the hot-water-insoluble (HWI) fractions but the chain-length distributions indicate that the HWI fractions carry longer chains than those in the HWS fractions. Light-scattering measurements show that the average size of whole molecules in the HWI component is significantly greater than in the HWS component. It is postulated that the structural differences limit solubility of the molecules in the HWI fraction, possibly due to co-crystallisation with adjacent molecules at more points than is possible for the shorter chains in HWS molecules.

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

推荐方案

在线留言

换一张?
取消