仪器网(yiqi.com)欢迎您!

| 注册
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

应用方案

仪器网/ 应用方案/ 直喷式火花塞点火透明发动机中氮氧化物形成过程的激光光

立即扫码咨询

联系方式:400-822-6768

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

Growing environmental concerns, such as global warming due to the emission of the greenhouse gas CO2 by automotive power plants, lead to the need for cleaner and fuel saving combustion systems. Direct injection combustion systems applied to the spark ignited engine might be a way to improve the efficiency particularly by reducing pumping and heat losses during part load while maintaining the advantages of high power density and engine speeds during high loads [Zhao, Lai et al., 1999]. Initially, wall guided combustion systems were pursued, but high hydrocarbon and soot emissions led to the investigation of spray guided systems. Here a higher degree of stratification is possible, which yields improved emissions [Drake, Fansler et al., 2004; Honda, Kawamoto et al., 2004]. Nonetheless, due to high oxygen availability and locally rich mixture, the nitric oxide formation is comparably high. This is detrimental as the widely employed exhaust aftertreatment by a three way catalytic converter is inefficient for overall lean mixtures. NO storage catalytic converters are widely employed, but require rich exhaust gas to reduce the stored NO. This is generated by operating the engine homogeneous-rich for a brief period of time, which of course comes with a fuel consumption penalty [Tamura, Kikuchi et al., 2001; Krebs, Pott et al., 2002]. A reduction of in-cylinder nitric oxide is desirable to minimize the number of regeneration cycles. Hence the understanding of in-cylinder NO formation is important, so that the necessary scientific background for improvement of the combustion system is provided. An assessment of the NO formation process inside the engine exclusively by drawing conclusions from engine out emissions is difficult, because of the highly inhomogeneous nature of the stratified charge combustion process. Also, due to high cyclic variability cycle resolved measurements are desirable, which conventional emissions analyzers are not capable of. 汽车发动机多参量测试系统 PLIF平面激光诱导荧光火焰燃烧检测系统 德国LaVision PIV/PLIF粒子成像测速场仪

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

推荐方案

在线留言

换一张?
取消