低场核磁技术突破月壤水泥基材料水化研究难题
随着人类对月球探索的不断深入,月球基地建设成为未来航天领域的重要目标。在月球环境中,就地取材制备建筑材料是降低成本、实现长期驻留的关键。月壤水泥基材料作为重要的候选材料之一,其水化过程直接影响材料的性能和可靠性。然而,月壤颗粒复杂(含玻璃质、角砾岩等),传统方法(SEM/XRD)难以实时监测水化过程,材料孔隙率、水分分布(吸附水 / 结合水)对强度影响显著,却缺乏原位监测手段。此时,低场核磁共振技术凭借其独-特优势,为月壤水泥基材料水化研究打开了新的局面。
月壤基材料研究现状与挑战
月球表面覆盖着一层由岩石碎块、矿物颗粒和玻璃质组成的月壤,其颗粒组成复杂,物理化学性质与地球土壤差异巨大。在制备月壤水泥基材料时,月壤颗粒的特性对水化反应产生重要影响。传统的扫描电子显微镜(SEM)和 X 射线衍射(XRD)等方法,虽然能对材料的微观结构和物相组成进行分析,但难以实现对水化过程的实时动态监测,无法及时捕捉水化反应中水分状态和孔隙结构的变化。
低场核磁技术的独-特优势
低场核磁共振技术通过检测氢质子(¹H)的弛豫时间,能够灵敏地反映材料中水分状态、孔隙分布及动力学过程。与传统方法相比,它具有非破坏性、实时监测、原位分析等显著优势,特别适合月壤基材料的研究。
铝酸盐水泥水化不同水化时间下的核磁共振T2谱
在月壤水泥基材料水化过程中,水分的存在形式和迁移规律对水化反应的进程和产物的形成至关重要。低场核磁可以准确区分吸附水和化学结合水,并实时监测它们在水化过程中的变化。通过分析氢质子的弛豫时间谱,能够获得水分在不同状态下的含量和分布信息,从而深入了解水化反应的机理。
全部评论(0条)
推荐阅读
-
- 低场核磁技术突破月壤水泥基材料水化研究难题
- 低场核磁共振技术通过检测氢质子(¹H)的弛豫时间,能够灵敏地反映材料中水分状态、孔隙分布及动力学过程。与传统方法相比,它具有非破坏性、实时监测、原位分析等显著优势,特别适合月壤基材料的研究。
-
- 低场核磁技术:破解模拟月壤基建筑材料物性检测难题
- 月球低重力环境下,材料孔隙率、水分分布(吸附水 / 化学结合水)对强度影响显著,却缺乏原位监测手段。在此背景下,低场核磁共振技术凭借独-特优势,为月壤基材料的研究带来了新的机遇。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论