仪器网(yiqi.com)欢迎您!

| 注册
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

答疑:XPS基本原理、技术特点及应用(1)&(2)

爱发科费恩斯(南京)仪器有限公司 2020-02-25 10:25:20 946  浏览
  •        PHI CHINA于2月20日、21日下午三点开讲了“XPS基本原理、技术特点及应用(1)&(2)”,相信小伙伴们都有认真听课,因为我们收到了很多提问,那现在就由PHI CHINA的技术团队来为您们一一解答吧!

    01 原理相关问题


    Q:俄歇电子和荧光产生过程?

    A:下图为X射线光电激发及其弛豫过程示意图。在XPS测试过程中,原子芯能级电子吸收X射线被电离,而相应的芯能级会留有空位,此时原子处于激发态会自发地发生弛豫,而退激发回到稳态。弛豫过程分为辐射弛豫和非辐射弛豫,前者发射出荧光,后者发射出俄歇电子。

            XPS也会收集到俄歇电子,从而产生俄歇谱图。其中俄歇电子是多个电子参与的退激发过程产生的,在退激发过程中处于高能级的电子可以跃迁到这一空位同时释放能量,当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子出射成为俄歇电子。例如KLL俄歇电子如下图所示:原子中一个K层电子被入射X射线激发成自由电子后在K层产生空位,L层的一个电子跃迁入K层填补空位,此时多余的能量被另一个L层电子吸收产生俄歇电子,相应的俄歇电子标记为KLL。俄歇电子的动能由参与此过程的能级所决定,与入射的光子能量无关,所以可以通过改变入射光子能量,从而调节俄歇电子在谱图中的结合能位置,避开谱图干扰。另外,俄歇电子也可以用于辅助鉴定化学态。

    Q:为什么p、d、f轨道都只会有两个裂分峰?

    A:这是由于电子自旋-轨道偶合效应导致的,根据总量子数j(j=lL+Sl,S=±1/2)而使电子能级出现裂分。例如对于s轨道,j=1/2,对于p轨道,j=1/2和j=3/2。需要注意的是,对于p、d、f轨道的两个裂分峰的峰面积是存在固定的比例,如下图所示:

    Q:每种元素的特征谱峰一定吗?

    A:除了H、He和少量放射性元素以外,元素周期表中的大多数元素都有相应的XPS特征谱峰,而且XPS谱峰具有元素“指纹效应”,可以用于鉴定元素的成分。同时原子外层电子结构变化会导致XPS特征谱峰出现有规律的化学位移,所以XPS可以通过观测化学位移,提供与化学态、分子结构或官能团相关的信息。需要注意的是,物种中含有多种组分,可能会存在特征谱峰重叠的问题,所以在判断元素成分和化学态的时候,除了关注特征谱峰外,也需要观察相应元素其他谱峰。


    Q:EDS探测深度比较深,不是表面的信息?

    A:是的。这是由于两个实验技术的原理不同所导致的,如下图所示:因为XPS检测是出射的光电子,光电子的非弹性平均自由程较小,所以提供的是表面信息;而EDS检测的是出射的特征X射线,而特征X射线的穿透能力可以达到微米,所以提供的是信息深度是微米级别的。这两种实验技术提供互补的信息,可以帮助我们深入了解样品性质。


    02 谱图相关问题

    Q:文献中Fe2p拟合非常混乱,有的是Fe2+的B.E.比Fe3+更高,有的更低。究竟那个价态更高呢?

    A:首先,Fe3+的结合能通常是要高于Fe2+的,但是要注意含Fe物质的具体成分。

    这个问题也是XPS谱图解析过程中常见的问题,不同的文献报道的XPS结合能位置会有存在差异,可能的原因如下:

    (a)即使都是Fe2+,但是配位的原子不同也会有不同的结合能位置,如下图的FeO、FeCO3和FeSO4

    (b)即使都是FeO,但是不同文献所测试样品形态不同、测试仪器不同、结合能校准方法不同,也会导致Fe2+结合能位置不完全一致;

    (c)不排除有些文献的测试结果是不合理的。

    基于以上的理解,我们参考文献分析XPS数据时,需要谨慎,选择合理可靠的文献,同时注意文献中的样品信息和测试条件。做XPS测试时,建议同时测试参照样品,可以帮助数据解析。

    Q:请问我们送XPS碳材料的样品,测样老师会询问里面的碳是石墨化碳或有机碳,请问其中的区别?

    A:首先,测试时要提供给老师尽可能详细的样品信息,有助于测试老师根据样品信息选择合理的测试条件和数据处理方法。碳材料中可能会有不同形式的C物种,例如sp2或sp3,对应物种的结合能位置也是不一样的。另外,XPS数据处理通常会采用C1s谱峰进行荷电校准,将烷烃碳谱峰位移到284.8eV,而不是采用sp2C校准到284.8eV。荷电校准是XPS数据处理中非常重要的一步,我们将在本期网络课程的数据处理课程中进行讲解,请参加相关课程。


    Q:老师,请问XPS测出来的数据使用前有必要平滑处理么?如果平滑的话会不会造成某些特征峰的减弱甚至消失呢?那么平滑几次合适呢?

    A:首先不建议进行平滑处理,因为平滑处理可能会导致谱图失真,例如谱峰强度或形状发生变化。如果发现谱图信噪很差,建议调整测试参数(如提高Pass energy或者增加测试时间等)来提高信噪比。


    Q:请问多重分裂峰产生的原因有哪些呢?多重分裂峰不太清楚,是每个元素都会产生吗?

    A:原子外层电子是一个多电子体系,其中存在复杂的相互作用。当原子的价壳层拥有未配对的自旋电子时,即当体系的总角动量j不为零时,那么XPS激发出芯能级电子所形成的空位,会与价轨道未配对自旋电子发生耦合效应,使体系出现多于一个终态,也就是在谱图上出现多个谱峰,称作多重分裂。不是每个元素都产生多重分裂峰,通常稀土金属(4f轨道上有未成对电子存在)的4s能级表现有强的分裂,过渡金属(3d轨道上有未成对电子存在)的3s能级表现有强的分裂,例如Mn 3s。因此利用s能级的多重分裂现象可以研究分子中未成对电子的存在情况,同时帮助化学态鉴别。


    Q:谱峰重叠,怎么处理?

    A:首先要判断是什么谱峰重叠在一起,可以有以下方法进行处理:

    (a)如果是特征谱峰和俄歇谱峰发生重叠,建议更换X射线能量;

    (b)如果是比较元素含量,可以选择测试元素的其他谱峰;

    (c)进行解谱分析。


    Q:卫星峰是什么?对于卫星峰,我们有必要进行分峰分析么?它的相对位置的标准谱有么?

    A:XPS谱图中,除了特征谱峰,还存在由于终态效应导致的卫星峰,例如shake up/off峰,这些谱峰也是非常重要,可以帮助鉴定化学态。是否分峰取决于实验需求,可以查找相关文献帮助确定解谱参数,例如对Co2p的解谱,可以参照这篇文献:Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co2p obtained with Al Kα radiation: I: cobalt spine


    Q:老师刚才讲到的全谱台阶变高那里说是可能样品受到污染,请问这个污染指的是表面的污染还是内部的?

    A:首先更正一下,全谱中本底台阶状升高是由于样品中更深层电子在出射过程中发生非弹性碰撞能量损失所导致,这是光电过程中正常存在的。但是如果样品表面被覆盖或者存在污染层,样品中出射的电子在穿过污染层时,会与污染物发生非弹性碰撞从而导致本底的异常抬高。在XPS测试时,这种本底的异常抬高可以帮助我们判断表面是否被覆盖或者存在污染层。


    Q:吸附材料在吸附物质后为啥表面检出量很低?

    A:XPS是表面敏感的分析方法,通常探测深度小于10nm。如果材料样品表面存在吸附层,在XPS可探测深度范围内,可检测到的材料含量会减少。如果表面的覆盖层的厚度大于XPS的探测深度,可能导致XPS无法检出到材料的信息。所以XPS测试的样品要求表面是清洁的。


    Q:我在做有机物的XPS时会有很多氧的峰,测试过程是抽真空的,这些氧是怎么来的?

    A:氧成分的来源有多种可能:

    (a)样品含有氧或者易被氧化,在传递到仪器进行测试前就已经含有氧;

    (b)测试时,X射线束斑照射到样品以外的区域;

    (c)如果测试的是用导电胶粘的粉末样品,XPS可能探测到导电胶中的氧成分;

    (d)仪器的真空较差,腔体中氧的含量较高。

           如果想要确定具体是哪种原因,需要从样品制备、传样到测试整个流程进行分析,我们在第五节课程中会讲到相关内容,请关注。


    Q:XPS测试,重复几次的数据都没有重复的很好,在往高能偏,往往是什么原因造成的?

    A:如果每次测试的峰位不重复且偏高结合能,很可能是样品荷电导致的,建议测试时开启仪器的荷电中和功能。


    Q:对于宽带半导体,根据O1s的高结合能一侧的Energy loss spectra,为什么可以得到这个材料的禁带宽度?对于过渡金属氧化物,2p-3d共振PES与3p-3d共振PES相比,在表征VB的构成时,有哪些优缺点?

    A:(a)O1s的能量损失谱是由于价带电子向导带电子跃迁而产生的,这个跃迁能量对应于Band gap,如下图所示;

    (b)从文献结果看,2p-3d共振有着更高的信号强度。但是这个领域接触较少,无法提供更详细的解答,建议多查找相关文献。


    03 微区分析相关问题

    Q:PHI的仪器集成SXI成像功能?可以当SEM吗?

    A:PHI XPS的X射线具有微聚焦扫描功能,X射线的束斑尺寸可以小于10um,所以可以进行点分析、线分析和面分析。PHI XPS的SXI影像是收集的X射线激发的二次电子影像,可以实现对分析区域的准确定位,但是空间分辨受限于X射线的束斑尺寸。然而SEM是采用的高能量电子束,所以空间分辨能力更高。


    Q:Mapping适用微区面积范围和分辨率呢?

    A:PHI XPS的真实X射线束斑可以达到7.5um, 也可以理解为Z小分辨率。

    微区分析的面积范围通常是从100um×100um到500um×500um。


    Q:EDS也有mapping,raman也有, 他们的区别是什么?

    A:这三种技术的区别主要是来自于他们原理,导致他们在探测的信息和检测的深度上都有差别:XPS检测的X射线激发的光电子,EDS检测的是电子激发的特征X射线,Raman检测的是光子。所以XPS是表面灵敏的分析方法,探测深度小于10nm,可以提供元素成分和化学态信息。


    04 刻蚀深度分析相关问题

    Q:刻蚀深度分析过程?刻蚀的深度测定?

    A:(a)XPS是表面分析方法,探测深度通常小于10nm,所以在需要结合离子源刻蚀进行深度分析,例如先用XPS测试表面信息,然后用离子源刻蚀移除表面,之后重复XPS测试和刻蚀过程。

    (b)离子源的刻蚀速率会采用标准样品进行测定,刻蚀的深度可以用刻蚀速率x刻蚀时间得到。但是需要注意的是,对于不同材料,刻蚀速率会有较大差别,特别是对于复杂材料会很困难得到的真实刻蚀速率。在深度分析时,通常是关注组分或化学态随刻蚀时间的变化趋势。另外,可以采用参照样品标定刻蚀速率或者通过膜厚仪测试刻蚀坑的深度来计算刻蚀深度。


    Q:刻蚀应该会造成新的缺陷,怎么避免呢?

    A:这是刻蚀中的常见问题。离子束刻蚀对样品会存在破坏性,如破坏化学键和择优刻蚀,建议根据材料选择合适的刻蚀离子源,尽可能降低对样品的损伤,例如对有机材料进行深度分析时建议选择团簇离子源。另外,可以选择非破坏性的深度分析方法,例如角度分辨的XPS或者硬X射线XPS。


    Q:粉末样品深度分析相关问题?

    A:采用刻蚀方法进行深度分析,通常是针对薄膜样品。如果粉末样品是由纳米颗粒所组成的,对于刻蚀而言其表面到内部是混乱无序的,所以不建议采用刻蚀方法对粉末样品进行深度分析。如果是具有core-shell结构的样品,建议采用调变入射X射线的能量进行深度分析。


    Q:老师怎么调节氩离子团簇聚集程度,直接调节氩气瓶上面的压力吗?怎么知道团簇中原子个数?

    A:对于PHI团簇离子枪,可以通过软件直接控制流量计调节团簇离子大小。对于离子个数的测量需要专用的配件。


    Q:老师以核壳结构的材料为例子时,为什么要比较两个不同激光源的谱图信息?单独使用Cr激光比较不同深度材料化学结构的差别是不是可以说明了?

    A:核壳结构是由核和壳两部分构成,在表征时需要确定核和壳两部分的组成和含量差异。只用单一能量的XPS给出的测试结果,只能说明在这个深度下的元素组分,无法给出组分变化趋势。调变入射X射线能量可以得到不同探测深度的信息,低能量的X射线探测表面信息,高能量X射线探测更深的信息,这也是核壳结构表征中常用的分析方法。


           各位小伙伴们,有没有找到您的答案呢?如果还有疑问,欢迎随时提问!接下来2月26日也就是本周三下午三点,将准时开讲“UPS/LEIPS基本原则、技术特点及应用”,一定不要错过哦!


    扫码关注PHI与高德


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

答疑:XPS基本原理、技术特点及应用(1)&(2)

       PHI CHINA于2月20日、21日下午三点开讲了“XPS基本原理、技术特点及应用(1)&(2)”,相信小伙伴们都有认真听课,因为我们收到了很多提问,那现在就由PHI CHINA的技术团队来为您们一一解答吧!

01 原理相关问题


Q:俄歇电子和荧光产生过程?

A:下图为X射线光电激发及其弛豫过程示意图。在XPS测试过程中,原子芯能级电子吸收X射线被电离,而相应的芯能级会留有空位,此时原子处于激发态会自发地发生弛豫,而退激发回到稳态。弛豫过程分为辐射弛豫和非辐射弛豫,前者发射出荧光,后者发射出俄歇电子。

        XPS也会收集到俄歇电子,从而产生俄歇谱图。其中俄歇电子是多个电子参与的退激发过程产生的,在退激发过程中处于高能级的电子可以跃迁到这一空位同时释放能量,当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子出射成为俄歇电子。例如KLL俄歇电子如下图所示:原子中一个K层电子被入射X射线激发成自由电子后在K层产生空位,L层的一个电子跃迁入K层填补空位,此时多余的能量被另一个L层电子吸收产生俄歇电子,相应的俄歇电子标记为KLL。俄歇电子的动能由参与此过程的能级所决定,与入射的光子能量无关,所以可以通过改变入射光子能量,从而调节俄歇电子在谱图中的结合能位置,避开谱图干扰。另外,俄歇电子也可以用于辅助鉴定化学态。

Q:为什么p、d、f轨道都只会有两个裂分峰?

A:这是由于电子自旋-轨道偶合效应导致的,根据总量子数j(j=lL+Sl,S=±1/2)而使电子能级出现裂分。例如对于s轨道,j=1/2,对于p轨道,j=1/2和j=3/2。需要注意的是,对于p、d、f轨道的两个裂分峰的峰面积是存在固定的比例,如下图所示:

Q:每种元素的特征谱峰一定吗?

A:除了H、He和少量放射性元素以外,元素周期表中的大多数元素都有相应的XPS特征谱峰,而且XPS谱峰具有元素“指纹效应”,可以用于鉴定元素的成分。同时原子外层电子结构变化会导致XPS特征谱峰出现有规律的化学位移,所以XPS可以通过观测化学位移,提供与化学态、分子结构或官能团相关的信息。需要注意的是,物种中含有多种组分,可能会存在特征谱峰重叠的问题,所以在判断元素成分和化学态的时候,除了关注特征谱峰外,也需要观察相应元素其他谱峰。


Q:EDS探测深度比较深,不是表面的信息?

A:是的。这是由于两个实验技术的原理不同所导致的,如下图所示:因为XPS检测是出射的光电子,光电子的非弹性平均自由程较小,所以提供的是表面信息;而EDS检测的是出射的特征X射线,而特征X射线的穿透能力可以达到微米,所以提供的是信息深度是微米级别的。这两种实验技术提供互补的信息,可以帮助我们深入了解样品性质。


02 谱图相关问题

Q:文献中Fe2p拟合非常混乱,有的是Fe2+的B.E.比Fe3+更高,有的更低。究竟那个价态更高呢?

A:首先,Fe3+的结合能通常是要高于Fe2+的,但是要注意含Fe物质的具体成分。

这个问题也是XPS谱图解析过程中常见的问题,不同的文献报道的XPS结合能位置会有存在差异,可能的原因如下:

(a)即使都是Fe2+,但是配位的原子不同也会有不同的结合能位置,如下图的FeO、FeCO3和FeSO4

(b)即使都是FeO,但是不同文献所测试样品形态不同、测试仪器不同、结合能校准方法不同,也会导致Fe2+结合能位置不完全一致;

(c)不排除有些文献的测试结果是不合理的。

基于以上的理解,我们参考文献分析XPS数据时,需要谨慎,选择合理可靠的文献,同时注意文献中的样品信息和测试条件。做XPS测试时,建议同时测试参照样品,可以帮助数据解析。

Q:请问我们送XPS碳材料的样品,测样老师会询问里面的碳是石墨化碳或有机碳,请问其中的区别?

A:首先,测试时要提供给老师尽可能详细的样品信息,有助于测试老师根据样品信息选择合理的测试条件和数据处理方法。碳材料中可能会有不同形式的C物种,例如sp2或sp3,对应物种的结合能位置也是不一样的。另外,XPS数据处理通常会采用C1s谱峰进行荷电校准,将烷烃碳谱峰位移到284.8eV,而不是采用sp2C校准到284.8eV。荷电校准是XPS数据处理中非常重要的一步,我们将在本期网络课程的数据处理课程中进行讲解,请参加相关课程。


Q:老师,请问XPS测出来的数据使用前有必要平滑处理么?如果平滑的话会不会造成某些特征峰的减弱甚至消失呢?那么平滑几次合适呢?

A:首先不建议进行平滑处理,因为平滑处理可能会导致谱图失真,例如谱峰强度或形状发生变化。如果发现谱图信噪很差,建议调整测试参数(如提高Pass energy或者增加测试时间等)来提高信噪比。


Q:请问多重分裂峰产生的原因有哪些呢?多重分裂峰不太清楚,是每个元素都会产生吗?

A:原子外层电子是一个多电子体系,其中存在复杂的相互作用。当原子的价壳层拥有未配对的自旋电子时,即当体系的总角动量j不为零时,那么XPS激发出芯能级电子所形成的空位,会与价轨道未配对自旋电子发生耦合效应,使体系出现多于一个终态,也就是在谱图上出现多个谱峰,称作多重分裂。不是每个元素都产生多重分裂峰,通常稀土金属(4f轨道上有未成对电子存在)的4s能级表现有强的分裂,过渡金属(3d轨道上有未成对电子存在)的3s能级表现有强的分裂,例如Mn 3s。因此利用s能级的多重分裂现象可以研究分子中未成对电子的存在情况,同时帮助化学态鉴别。


Q:谱峰重叠,怎么处理?

A:首先要判断是什么谱峰重叠在一起,可以有以下方法进行处理:

(a)如果是特征谱峰和俄歇谱峰发生重叠,建议更换X射线能量;

(b)如果是比较元素含量,可以选择测试元素的其他谱峰;

(c)进行解谱分析。


Q:卫星峰是什么?对于卫星峰,我们有必要进行分峰分析么?它的相对位置的标准谱有么?

A:XPS谱图中,除了特征谱峰,还存在由于终态效应导致的卫星峰,例如shake up/off峰,这些谱峰也是非常重要,可以帮助鉴定化学态。是否分峰取决于实验需求,可以查找相关文献帮助确定解谱参数,例如对Co2p的解谱,可以参照这篇文献:Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co2p obtained with Al Kα radiation: I: cobalt spine


Q:老师刚才讲到的全谱台阶变高那里说是可能样品受到污染,请问这个污染指的是表面的污染还是内部的?

A:首先更正一下,全谱中本底台阶状升高是由于样品中更深层电子在出射过程中发生非弹性碰撞能量损失所导致,这是光电过程中正常存在的。但是如果样品表面被覆盖或者存在污染层,样品中出射的电子在穿过污染层时,会与污染物发生非弹性碰撞从而导致本底的异常抬高。在XPS测试时,这种本底的异常抬高可以帮助我们判断表面是否被覆盖或者存在污染层。


Q:吸附材料在吸附物质后为啥表面检出量很低?

A:XPS是表面敏感的分析方法,通常探测深度小于10nm。如果材料样品表面存在吸附层,在XPS可探测深度范围内,可检测到的材料含量会减少。如果表面的覆盖层的厚度大于XPS的探测深度,可能导致XPS无法检出到材料的信息。所以XPS测试的样品要求表面是清洁的。


Q:我在做有机物的XPS时会有很多氧的峰,测试过程是抽真空的,这些氧是怎么来的?

A:氧成分的来源有多种可能:

(a)样品含有氧或者易被氧化,在传递到仪器进行测试前就已经含有氧;

(b)测试时,X射线束斑照射到样品以外的区域;

(c)如果测试的是用导电胶粘的粉末样品,XPS可能探测到导电胶中的氧成分;

(d)仪器的真空较差,腔体中氧的含量较高。

       如果想要确定具体是哪种原因,需要从样品制备、传样到测试整个流程进行分析,我们在第五节课程中会讲到相关内容,请关注。


Q:XPS测试,重复几次的数据都没有重复的很好,在往高能偏,往往是什么原因造成的?

A:如果每次测试的峰位不重复且偏高结合能,很可能是样品荷电导致的,建议测试时开启仪器的荷电中和功能。


Q:对于宽带半导体,根据O1s的高结合能一侧的Energy loss spectra,为什么可以得到这个材料的禁带宽度?对于过渡金属氧化物,2p-3d共振PES与3p-3d共振PES相比,在表征VB的构成时,有哪些优缺点?

A:(a)O1s的能量损失谱是由于价带电子向导带电子跃迁而产生的,这个跃迁能量对应于Band gap,如下图所示;

(b)从文献结果看,2p-3d共振有着更高的信号强度。但是这个领域接触较少,无法提供更详细的解答,建议多查找相关文献。


03 微区分析相关问题

Q:PHI的仪器集成SXI成像功能?可以当SEM吗?

A:PHI XPS的X射线具有微聚焦扫描功能,X射线的束斑尺寸可以小于10um,所以可以进行点分析、线分析和面分析。PHI XPS的SXI影像是收集的X射线激发的二次电子影像,可以实现对分析区域的准确定位,但是空间分辨受限于X射线的束斑尺寸。然而SEM是采用的高能量电子束,所以空间分辨能力更高。


Q:Mapping适用微区面积范围和分辨率呢?

A:PHI XPS的真实X射线束斑可以达到7.5um, 也可以理解为Z小分辨率。

微区分析的面积范围通常是从100um×100um到500um×500um。


Q:EDS也有mapping,raman也有, 他们的区别是什么?

A:这三种技术的区别主要是来自于他们原理,导致他们在探测的信息和检测的深度上都有差别:XPS检测的X射线激发的光电子,EDS检测的是电子激发的特征X射线,Raman检测的是光子。所以XPS是表面灵敏的分析方法,探测深度小于10nm,可以提供元素成分和化学态信息。


04 刻蚀深度分析相关问题

Q:刻蚀深度分析过程?刻蚀的深度测定?

A:(a)XPS是表面分析方法,探测深度通常小于10nm,所以在需要结合离子源刻蚀进行深度分析,例如先用XPS测试表面信息,然后用离子源刻蚀移除表面,之后重复XPS测试和刻蚀过程。

(b)离子源的刻蚀速率会采用标准样品进行测定,刻蚀的深度可以用刻蚀速率x刻蚀时间得到。但是需要注意的是,对于不同材料,刻蚀速率会有较大差别,特别是对于复杂材料会很困难得到的真实刻蚀速率。在深度分析时,通常是关注组分或化学态随刻蚀时间的变化趋势。另外,可以采用参照样品标定刻蚀速率或者通过膜厚仪测试刻蚀坑的深度来计算刻蚀深度。


Q:刻蚀应该会造成新的缺陷,怎么避免呢?

A:这是刻蚀中的常见问题。离子束刻蚀对样品会存在破坏性,如破坏化学键和择优刻蚀,建议根据材料选择合适的刻蚀离子源,尽可能降低对样品的损伤,例如对有机材料进行深度分析时建议选择团簇离子源。另外,可以选择非破坏性的深度分析方法,例如角度分辨的XPS或者硬X射线XPS。


Q:粉末样品深度分析相关问题?

A:采用刻蚀方法进行深度分析,通常是针对薄膜样品。如果粉末样品是由纳米颗粒所组成的,对于刻蚀而言其表面到内部是混乱无序的,所以不建议采用刻蚀方法对粉末样品进行深度分析。如果是具有core-shell结构的样品,建议采用调变入射X射线的能量进行深度分析。


Q:老师怎么调节氩离子团簇聚集程度,直接调节氩气瓶上面的压力吗?怎么知道团簇中原子个数?

A:对于PHI团簇离子枪,可以通过软件直接控制流量计调节团簇离子大小。对于离子个数的测量需要专用的配件。


Q:老师以核壳结构的材料为例子时,为什么要比较两个不同激光源的谱图信息?单独使用Cr激光比较不同深度材料化学结构的差别是不是可以说明了?

A:核壳结构是由核和壳两部分构成,在表征时需要确定核和壳两部分的组成和含量差异。只用单一能量的XPS给出的测试结果,只能说明在这个深度下的元素组分,无法给出组分变化趋势。调变入射X射线能量可以得到不同探测深度的信息,低能量的X射线探测表面信息,高能量X射线探测更深的信息,这也是核壳结构表征中常用的分析方法。


       各位小伙伴们,有没有找到您的答案呢?如果还有疑问,欢迎随时提问!接下来2月26日也就是本周三下午三点,将准时开讲“UPS/LEIPS基本原则、技术特点及应用”,一定不要错过哦!


扫码关注PHI与高德


2020-02-25 10:25:20 946 0
XPS基本原理、技术特点及应用(1)&(2)知识点总结

     “PHI CHINA表面分析技术网络讲堂之光电子能谱ZT”在上周已经开讲两课啦,有90多所高校和科研院所的共计千余名师生参与学习与讨论。就“XPS基本原理、技术特点及应用”内容,主讲老师鞠焕鑫博士给大家作了知识点总结。相信小伙伴们已经迫不及待的想要了解了吧!快快拿起您的纸和笔,让我们一起来划ZD:








       疫情虽在,学习不断。希望PHI CHINA的课程可以为小伙伴们增加一些实在又实用的知识。接下来的两周,PHI CHINA将继续为大家献上光电子能谱的ZT讲座,快来为即将到来的开学学习暖暖身吧!

       下节课“UPS/LEIPS基本原理、技术特点及应用”在2月26号本周三下午三点准时开讲。


扫码关注PHI与高德

2020-02-25 09:40:14 440 0
答疑:UPS/LEIPS基本原理、特点及应用

小伙伴们,上一篇的知识点总结,大家都认真看完了吗?(~ ̄▽ ̄)

大家提出的问题,老师都一一解答,快来跟我去一探究竟吧!

明天(33日)下午三点继续解锁新课程“数据处理:数据处理原则和MultiPak软件功能概述”,如果喜欢我们的课程,欢迎朋友圈分享哦 ̄ω ̄=

2020-03-03 09:22:35 439 0
气体发生器基本原理及技术特点

一、氢气发生器原理


以二次蒸馏水为原料,添加10%KOH作为电解质,产生99.999%的高纯氢气.电解质采用新型恒流开关电源,根据用户实际用气量调节输出电流,从而实现流量自动跟踪.并设有过压保护装置,确保使用绝dui安全。


二、氮气发生器基本原理


采用现代燃料电池技术,先将空气中的O2在外加电源的作用下与H2O反应生成OH-,然后在电场力作用下,实现气液分离,最后将OH-还原成O2和H2O,从而将空气中的N2和O2分离。


化学式:O2+2H2O+4e=4OH-


由于采用了优化设计的催化剂,使用提纯后的N2中残氧量极低(3ppm以下),如再经过后期脱氧处理,残养量可进一步降低1ppm以下,因此可以满足各种检测器对载气纯度的要求。


其它微量杂质如CO、H2O等采用物理吸附方法去除。


三、特点


1.使用安全


使用时气压低,关机后残余气量少,并有过压保护装置,使用绝dui安全;


2.操作方便


随开随关,免除搬运之苦,真正一劳永逸;


3.成本低廉


氢气发生器使用过程中只消耗蒸馏水,最da功率150VA;氮气发生器只消耗空气(需另接空气源),最da功率100VA;


4.结构紧凑


外观优美,占地面积小,使实验室实现仪器化;

四、三气发生器使用注意事项

1.开机顺序:

①检察氮气开关阀处于“关”位置(向内);

② 打开空气源开关,空气和氮气压力逐渐上升;

③ 待空气,氮气压力升至0.35MPa时,打开氢气和氮气电源开关;

④待氮气排空30分钟以后,打开氮气开关阀,此时氮气流量由气相色谱仪控制;氢气在流量指示为“000”后可以使用,流量也由气相色谱仪控制;

2.关机顺序:

关机顺序刚好相反,即先关氮气开关阀,再依次关氮气,氢气和空气电源开关。

单独使用氢气时,应先开空气电源开关;单独使用氮气时,也需同时打开氢气电源开关。

注意液体高度,在接近下限时应及时添加蒸馏水,但不要超过上限.建议每半年更换一次电解质.请勿在无液状态下开启氮气或氢气电源开关!

注意干燥管内变色硅胶的颜色(仪器背部左下方的变色硅胶也要注意观察),变为粉红色后应及时更换,方法参见说明书。

在空气潮湿的季节,空气储气罐中会有少量残留水分,可以从仪器背部的"放液口"排出.方法是:在仪器停止工作后,将防液口的密封螺母松开,利用气罐中的空气压力将水分压出,完毕后将密封螺母重新拧好。

在维护仪器时,如需降压,应通过色谱或气源上的流量阀排气,请勿直接从接头处放气,以免压力突然降低,损坏气路元件。


2022-05-23 14:36:19 348 0
热裂解仪(器)进样分析基本原理、技术特点及应用

气相色谱仪–热裂解仪(器)联用,在水运工程、石油化工、有机化学、生物医药、高分子化学、地质勘探、环境保护等领域都得到有效的应用。其主要的工作原理为:有机化合物在严格控制的环境中加热,使之裂解成为可挥发的小分子,采用联用的气相色谱仪分离和检测这些裂解的小分子;由于有机化合物在一定条件下的裂解方式主要取决于分子结构,因此,可以根据其裂解产物的定性定量数据,推断有机化合物的组成和结构。

一、基本原理:

热裂解(分解)是在热能作用下物质发生化学降解的过程。在一定条件下,高分子有机物遵循一定的裂解规律,即特定的样品能够产生特定的裂解产物和产物分布,采用气相色谱分析和鉴定裂解产物,可据此对原样品进行表征。

将高分子样品置于裂解器中,在严格控制的操作条件下,使之迅速高温热裂解,生成可挥发的小分子产物,然后将裂解产物送入气相色谱仪中进行分离分析。因为裂解碎片的组成和相对含量与待测高分子的结构密切相关,每种高分子的裂解色谱图都有其特征,故裂解色谱图又称热裂解指纹色谱图。

二、对热裂解仪的要求:

1、由于裂解温度不同,裂解产物不同,裂解温度控制要精确,可重复进行。

2、不同的物质需要不同的裂解温度,裂解温度要可调。

3、裂解器热容量大,升温速度快。

4、裂解器与接口的体积小,以减小死体积,防止色谱峰展宽。

5、对裂解反应无催化反应,防止歧化反应和二次反应。

三、热裂解仪类型:

1、管式炉裂解器:

管式炉裂解器通常由一个外壁加热的石英管制成,采用电热丝加热,裂解温度在300~1000,恒温精度高。当炉温达到设定温度时,将样品置于铂金小舟内,用推杆将铂金小舟送人裂解炉,样品不与管壁接触。

管式炉裂解器结构简单,可定量进样,操作方便,裂解温度连续可调。但升温速率不可调,死体积大,容易产生二次反应。

2、热丝裂解器:

热丝裂解器通常由直径0.2~0.5mm、长50mm左右的铂丝或镍铬丝绕成螺旋状而成,样品涂在金属热丝上,热丝用稳定电压加热到所需温度,可使样品裂解。

热丝裂解器结构简单,加热时间短,二次反应少。但不易定量进样,一般只用于定性分析。

3、居里点裂解器:

居里点裂解器是一种高频感应加热裂解器,采用铁磁性材料作加热元件。将它置于高频电场中,会吸收射频能量而迅速升温,当达到居里点温度时,铁磁质变为顺磁质,不再吸收射频能量,温度稳定在居里点温度。当切断高频电源后温度下降,铁磁性又恢复。将样品附着在加热元件上,样品可在居里点温度裂解。

不同铁磁质的居里点温度不同,通过调节铁磁质合金的组成可获得所需温度的加热元件。

4、激光裂解器。

四、热裂解仪特点:

1、分离效率高:热裂解气相色谱仪大都使用毛细管色谱柱,可以对复杂的裂解产物进行有效的分离,尤其是高分子有机物之间的微小差异,聚合物材料中的微量组分,都能在裂解色谱图上灵敏地反映出来,找到相应的特征。

2、灵敏度高:热裂解气相色谱仪一般采用氢火焰离子化检测器,灵敏度很高。

3、样品用量少:样品用量一般为μg至mg量级,对只能获得微量样品的检测很有利。

4、分析速度快:典型的分析周期为30min。当裂解产物很复杂时,1~2h可以完成一次分析。

5、信息量大:可以进行定性和定量分析,还可以进行裂解条件与裂解产物的关系、样品结构与裂解产物的关系、裂解机理和反应动力学的研究。

6、应用范围广:适用于各种形态样品,不需要预处理,无论是粘稠液体、粉沫、纤维和弹性体等,还是固化的树脂、涂料和硫化橡胶等都可以直接进样分析。

7、易于普及:裂解进样器结构简单,与气相色谱仪组合在一起就可以进行分离分析。

8、可以和各种色谱仪、光谱仪联接:凡是可以和气相色谱仪联接的光谱仪器,都可以和热裂解气相色谱仪在线联接。

五、应用:

适用于分子量较大、结构复杂、难挥发和难溶解物质的分离分析。

在药物分析中,可采用闪蒸技术分析中草药中的可挥发性成分。所谓闪蒸是指在样品裂解前,用较低的温度(低于样品的裂解温度)对样品快速加热,将挥发性成分蒸发出来,得到一张色谱图。然后在高温下对样品进行裂解,得到裂解色谱图。这样可获得样品中挥发性成分的重要信息,在样品定性鉴定中非常有用。


2021-06-27 11:55:26 1226 0
答疑:AES基本原理、主要功能和应用

1.问:求问电镜分辨率1.6nm0.8nm在实际效果差多少?主要观测半导体芯片,具体差别在哪里?

回复:当然总的来说空间分辨率越高,成像特征越清晰;但实际应用与样品基体效应、分析需求、电镜优势性能、操作条件比如加速电压、电流、工作距离,真空环境等都有关系,由具体情况决定。

通常供应商提供分辨率指标都是在特定条件比如高加速电压下低电流由标准样品测试得到的。如果观测半导体芯片,如果看浅表形貌特征,需要低加速电压,这时候可能电镜分辨率1.6nm0.8nm的实际差异不大,要看此电镜在低加速电压的分辨能力;

当分析对象尺度接近电镜空间分辨能力的时候,比如几个纳米的形貌特征(小于10nm),可能分辨率1.6nm0.8nm的不同电镜能体现出成像差异;但当分析特征的尺度远大于空间分辨率的时候,比如100nm,从成像上两者的差别不会很明显。

以上是经验浅谈,毕竟PHI不是电镜供应商,仅供大家参考。

 

2.问:请问AESSEM-EDS测试的元素分布的区别?

回复AES EDS成分分析的主要区别:

3.问:这种AES化学态的分析和XPS有什么区别?

回复

总的来说化学态分析主要用XPS,而AES主要获得元素信息,也有一定的化学态信息:

 

1)  俄歇激发本身涉及不同轨道能级三个电子的行为,俄歇电子动能与三个电子对应的轨道的结合能相关,比较难预测动能变化与化学态的相关性,不像XPS是单电子激发,原子得电子和失电子带来的结合能位移有一定的原则,有助于判断化学态;

2)  俄歇是电子源入射,电子源本身对化学态尤其是有机材料的化学键有一定的破坏作用;电子源激发出的图谱里有较大的背景(背散电子'弹性散射和非弹性散射背底、二次电子背底等)影响谱峰判定,给化学态判断带来影响;

3)  AES能量分辨率没有XPS能量分辨高,AES谱峰宽、谱峰分裂多(多种终态),不对称性等都影响化学态判断。而XPS谱峰(能量分辨好、背底干扰小、对称性好、 特征峰比如轨道分裂峰、卫星峰等)有化学态特征性。

 

4.:请问AES在钙钛矿太阳能电池上有何应用嘛?

回复:只要样品有一定导电性或通过样品制备改善荷电效应,都可以用AES进行分析,所以AES可以分析钙钛矿太阳能电池材料(采用导电铜胶固定样品),但因为钙钛矿材料主要是有机金属卤化物半导体材料,AES电子束对有机化学键有一定损伤,不能用于化学态判定,但可以用俄歇表征元素定性和半定量结果(里面有特征元素比如Pb/I(Br)等), 但也有谱峰重合问题(比如IO谱峰);所以总体来说AES对钙钛矿材料成分表征有一定局限性。

 

5.问:请问不导电的样品可以测试AES吗?

回复俄歇主要用于测导体,半导体,对于绝缘材料除非改善荷电效应可以用俄歇分析,但对于有机材料本身电子束对化学键损伤,即使测出有机材料的元素比如C/O/N/S对有机材料的成分分析来说信息非常有限,意义不大。

 

6.问:硅酸盐粘土矿物可以吗?也是绝缘性的?AES可以区分出来不同羟基吗? Si-OH Al-OH可以区分出来吗?

回复同上,除非能改善荷电效应才能分析绝缘材料,本来荷电效应大就会使谱峰信号差,谱峰变形严重(展宽、能量位移等),不能进行化学态判定,所以主要获得元素信息,不能识别化学态(比如羟基等)。


扫描下方二维码,关注PHI与高德
更多精彩,更多福利

2020-03-16 10:37:42 651 0
答疑:AES基本原理、主要功能和应用

Q:求问电镜分辨率1.6nm和0.8nm在实效果差多少?主要观测半导体芯片,具体差别在哪里?

A:当然总的来说空间分辨率越高,成像特征越清晰;但实际应用与样品基体效应、分析需求、电镜优势性能、操作条件比如加速电压、电流、工作距离,真空环境等都有关系,由具体情况决定。

通常供应商提供分辨率指标都是在特定条件比如高加速电压下低电流由标准样品测试得到的。如果观测半导体芯片,如果看浅表形貌特征,需要低加速电压,这时候可能电镜分辨率1.6nm和0.8nm的实际差异不大,要看此电镜在低加速电压的分辨能力;

当分析对象尺度接近电镜空间分辨能力的时候,比如几个纳米的形貌特征(小于10nm),可能分辨率1.6nm和0.8nm的不同电镜能体现出成像差异;但当分析特征的尺度远大于空间分辨率的时候,比如100nm,从成像上两者的差别不会很明显。

以上是经验浅谈,毕竟PHI不是电镜供应商,仅供大家参考。


Q:请问AES和SEM-EDS测试的元素分布的区别?

A:AES和EDS成分分析的主要区别:

Q:这种AES化学态的分析和XPS有什么区别?

A:总的来说化学态分析主要用XPS,而AES主要获得元素信息,也有一定的化学态信息: 

(1)俄歇激发本身涉及不同轨道能级三个电子的行为,俄歇电子动能与三个电子对应的轨道的结合能相关,比较难预测动能变化与化学态的相关性,不像XPS是单电子激发,原子得电子和失电子带来的结合能位移有一定的原则,有助于判断化学态;

(2)俄歇是电子源入射,电子源本身对化学态尤其是有机材料的化学键有一定的破坏作用;电子源激发出的图谱里有较大的背景(背散电子 弹性散射和非弹性散射背底、二次电子背底等)影响谱峰判定,给化学态判断带来影响;

(3)AES能量分辨率没有XPS能量分辨高,AES谱峰宽、谱峰分裂多(多种终态),不对称性等都影响化学态判断。而XPS谱峰(能量分辨好、背底干扰小、对称性好、 特征峰比如轨道分裂峰、卫星峰等)有化学态特征性。


Q:请问不导电的样品可以测试AES吗?

A:俄歇主要用于测导体,半导体,对于绝缘材料除非改善荷电效应可以用俄歇分析,但对于有机材料本身电子束对化学键损伤,即使测出有机材料的元素比如C/O/N/S对有机材料的成分分析来说信息非常有限,意义不大。


Q:硅酸盐粘土矿物可以吗?也是绝缘性的?AES可以区分出来不同羟基吗? Si-OH Al-OH可以区分出来吗? 

A:同上,除非能改善荷电效应才能分析绝缘材料,本来荷电效应大就会使谱峰信号差,谱峰变形严重(展宽、能量位移等),不能进行化学态判定,所以主要获得元素信息,不能识别化学态(比如羟基等)。


Q:请问AES在钙钛矿太阳能电池上有何应用吗?

A:只要样品有一定导电性或通过样品制备改善荷电效应,都可以用AES进行分析,所以AES可以分析钙钛矿太阳能电池材料(采用导电铜胶固定样品),但因为钙钛矿材料主要是有机金属卤化物半导体材料,AES电子束对有机化学键有一定损伤,不能用于化学态判定,但可以用俄歇表征元素定性和半定量结果(里面有特征元素比如Pb/I(Br)等),但也有谱峰重合问题(比如I和O谱峰);所以总体来说AES对钙钛矿材料成分表征有一定局限性。


2020-03-13 10:53:35 638 0
UPS/LEIPS基本原理、特点及应用知识要点

新的一天,新的一周开始啦!小伙伴们是否与我一样开始投入到新的一轮工作与学习中了呢?本周将开始关于数据处理的新一轮课程,明天的课程内容为“数据处理原则和MultiPak软件功能概述”,想要了解的小伙伴们速速调好闹钟,下午三点准时开讲~

学习新知识的同时,也不要忘记温习哟!第三课的ZD老师已总结和归纳好了,我们一起回顾吧!



如果喜欢我们的课程就请多多分享~

有兴趣参加的小伙伴加PHI小助手微信(扫下图二维码)报名即可,PHI小助手会将你拉入微信群。不要犹豫,快来加入我们吧!!


2020-03-03 09:13:22 320 0
多色荧光原位杂交技术(M-FISH)的基本原理及应用

荧光原位杂交技术(fluorescence in situ  hybridization,FISH)是根据核酸碱基互补配对原理,用半抗原标记DNA或者RNA探针与经过变性的单链核酸序列互补配对,通过带有荧光基团的抗体去识别半抗原进行检测,或者用荧光基团对探针进行直接标记并与目标序列结合,利用荧光显微镜直接观察目标序列在细胞核、染色体或切片组织中的分布情况。M-FISH则是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其特点是可将多次繁琐的FISH实验和多种不同的基因定位在一次FISH实验中完成。M-FISH能同时检测多个基因,分辨复杂的染色体易位和微小缺失,区分间期细胞多倍体和超二倍体等。M-FISH用激发光谱和吸收光谱不同的荧光索按一定调色方法标记不同的探针,从而对不同靶DNA同时进行定位和分析,并能对不同探针在染色体上的位置进行排序。

探针荧光素颜色调配的方法有非调色法,混合调色法和比例调色法。这3种调色法中,比例调色法只需要几种荧光素就可标记多种探针,因而更有发展潜力。染色体描绘、比较基因组杂交、光谱染色体自动核型分析、交叉核素色带分析及多彩色原位启动标记等技术都是在M-FISH的基础上发展起来的。

与其他原位杂交技术相比,多色荧光原位杂交具有很多优点,主要体现在:

①宜于多靶杂交,可对同一个细胞学制片进行多个探针杂交;

②通过在同一个核中显示不同的颜色可一次性显示全部的染色体数量或结构的变化;

③能检测到传统显带方法不易发现的亚纤维染色体畸变不仅能够鉴定隐藏的易位和复杂的重拍,而且可以分析与肿瘤发生相关的重要标记染色体及其基因。

目前该项技术目前已广泛应用于动植物基因组结构研究,染色体精细结构变异分析,病毒感染分析,微生态分析,肿瘤遗传学和基因组进化研究等许多领域。

明美MFISH荧光原位杂交分析系统 就是一款专为荧光显微图像的捕捉和处理而开发的实用图像软件。它搭配不同波段光谱滤光片的荧光显微镜以及高灵敏度的相机可对多种探针信号进行检测成像,还有区域自动曝光,自动着色,信号点增强,一键合成多色荧光通道图像,自定义各种颜色的探针,多焦面信号景深叠加,多层图像位置偏移较正等功能。

深圳禾正医院的老师采用了明美的MFISH荧光原位杂交分析系统,检测中用her2/cep17的比值来测定是否有此原癌基因扩增,当HER2/CEP17比值≥2.0时,为HER2阳性;此外老师还定制了双通道荧光模块,可以同时在目镜下观察到红绿两种颜色的信号点,大大提高科室的工作效率。


(来源:http://www.mshot.com/article/903.html 广州市明美光电技术有限公司)

2021-01-06 09:46:43 3035 0
拉力试验机:基本原理、使用方法及应用价值

引言

拉力试验机是一种用于测试材料拉伸性能的实验设备,常用于评估材料的强度、弹性、韧性等性能。本文将详细介绍拉力试验机的基本原理、使用方法及其优缺点,并探讨其在实际应用场景中的重要性和应用价值。

基本原理

拉力试验机主要通过拉伸试样来测试材料的力学性能。试验机一般由主机、控制系统、检测系统、夹具等组成。在测试过程中,试样被安装在夹具中,然后通过主机施加拉伸载荷。同时,试验机将记录试样的应力、应变、位移等数据,以评估材料的力学性能。


上海和晟 HS系列 电子拉力试验机

使用方法

使用拉力试验机时,首先需要选择合适的试样形状和尺寸,并将其安装到试验机的夹具中。然后,设置试验机的控制参数,如拉伸速率、加载方式等。在测试过程中,试验机将自动记录数据,并在测试结束后生成测试报告。

拉力试验机具有测试结果准确、操作简便、可重复性强等优点。同时,它也能够提供关于材料力学性能的丰富信息,为材料研究和开发提供指导。然而,拉力试验机也存在一定的不足,如测试结果受试样形状和尺寸影响较大、需要专业操作等。

实际应用

在航空、汽车、机械、电子等领域,拉力试验机具有重要的应用价值。通过拉力试验机的测试结果,可以了解材料在拉伸载荷下的力学性能,进而指导材料的研究与开发。此外,拉力试验机还可以用于评估生产过程中材料的质量控制。

结论

拉力试验机在测试材料力学性能方面具有重要应用价值。它能够提供关于材料力学特性的丰富信息,为材料研究和开发提供指导。尽管拉力试验机存在一定的不足,如测试结果受试样形状和尺寸影响较大、需要专业操作等,但其优点如测试结果准确、操作简便、可重复性强等,使得拉力试验机在航空、汽车、机械、电子等领域中具有广泛的应用前景。未来,随着科学技术的发展,期待出现更加精确、便捷的拉力试验机,为材料研究和开发提供更多有用的信息。


2023-06-28 11:27:46 183 0
炭黑含量测试仪:基本原理、使用方法及应用场景

炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。

上海和晟 HS-TH-3500 炭黑含量测试仪

基本原理

炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。


使用方法

使用炭黑含量测试仪需要按照以下步骤进行:

  1. 准备样品:将待测1g样品,并按照测试并放入燃烧舟。

  2. 开机预热:打开测试仪,通几分钟氮气,设置升温程序。

  3. 放置样品:将准备好的样品放入石英管中。

  4. 开始测试:按下测试按钮,试验结束后拿出样品。

  5. 数据处理:根据公式计算出测试结果。


炭黑含量测试仪的优点包括:

  1. 精度高:可以精确测量材料中的炭黑含量。

  2. 快速方便:测试速度快,操作简单方便。

  3. 适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。

炭黑含量测试仪的缺点包括:

  1. 价格较高:仪器价格相对较高,不是所有用户都能承担。

  2. 需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。


实际应用

炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。

结论

未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。


2023-07-24 10:22:40 110 0
超临界流体萃取技术的基本原理,工艺流程,基本特点及主要影响因素
 
2017-09-06 14:55:07 1273 1
1:工业机器人定义及特点?
1:工业机器人定义及特点?
2012-11-14 06:10:31 302 5
PHI CHINA 表面分析技术网络讲堂 之光电子能谱ZT(1)答疑

问题1:膜厚大于6nmXPS能检测到吗?

解答:XPS是表面分析技术,通常检测深度定义为对应出射光电子动能在相应材料中的非弹性平均自由程(λ)的3倍。 XPS的探测深度也取决于所测试的材料,对于金箔样品的探测深度大约是5 nm,而对Si样品的探测深度大约为9 nmXPS对于具体材料的探测深度可以通过查询IMFP数据,根据3λ估算探测深度。

 

问题2:俄歇谱图中LMM是什么意思?

解答:俄歇电子是由于原子中的电子被X射线激发后,在退激发过程而产生的次级电子。XPS测试中X射线将在原子壳层中的电子激发成自由电子,会产生电子空穴后而处于激发态。退激发过程中处于高能级的电子可以跃迁到这一空位同时释放能量,当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子出射成为俄歇电子。对于LMM俄歇电子如图所示:原子中一个L层电子被入射X射线激发成自由电子后,M层的一个电子跃迁入L层填补空位,此时多余的能量被另一个M层电子吸收产生二次电子,相应的俄歇电子标记为LMM

 

问题3:功函数的应用是啥?

解答:功函数的定义是费米能级处的电子从样品表面逃逸出来,进入真空成为自由电子所需要克服的势垒,通常也称作逸出功。功函数是半导体光电器件和光催化等领域中非常重要的参数,与器件/材料的性能密切相关,

 

问题4Mapping采谱时间?

解答:Mapping谱图是由多个像素点组成,每个像素点都包含一张谱图,例如本次讲解的Mapping谱图是由256x256个像素点组成,共计65K个像素点。在本次测试中,能量分析器采用128通道非扫描模式进行采集Mapping谱图,对于含量较高的C/O/F元素谱图,采集时间分别为8分钟,而对于含量较低的S/Pt元素谱图,采集时间分别为16分钟。一个质量较好的Mapping谱图的采集时长会有多个因素影响,包括采集元素的类别/含量、X射线光斑尺寸/功率和Frame次数等参数,在采谱参数设定好后,Smartsoft软件会给出预估时间。

 

问题5.怎么把拟合结果应用到谱图里面?用的什么软件?

解答:Mapping谱图由多个像素点组成,每个像素点都包含一张谱图,通过MultiPak软件可回溯分析特定元素成像中每个像素点所对应的化学态谱图,对于谱图拟合可以通过多种分析方法进行拟合,包括常用的Curve fittingLLS方法和TFA方法,在第三节数据处理的课程中会有相关内容的详细讲解,请关注。

 

 

 

问题6. 这个系统学习是在分析化学吗?

解答:有些学校的分析化学课程可能会涉及部分表面分析技术。目前很多高校开设的课程,如材料分析、波谱能谱分析和仪器分析等课程可能包含有关XPS的内容。另外,有很多参考书籍也有XPS内容,可以自行学习。

 

问题7. 我之前看资料,说费米能级在0 eV,这是因为校准过吗?

解答:在本次课程中所展示的金的UPS谱图是施加-9V偏压后测试所得到的,所以在偏压的作用下,整个UPS谱图会有相应的偏移,如果对偏压进行校准,费米能级会校准到结合能为0 eV处。

 

问题8:第20PPTX-ray作用深度可达um级别,但Z终检测nm级别,为什么呢?由于网络问题,这中间的介绍没听到~

解答:XPS是基于光电效应的一种表面分析技术,其中X-ray激发原子中的芯能级电子,可以通过检测出射的光电子得到XPS谱图。对于软X射线,其在固体中的穿透深度可以达到um级别,但是出射电子受限于较小的非弹性平均自由程,通常只有表面10nm以内光电子会在没有能量损失的情况下而被检测到,所以XPS是一种表面灵敏的分析技术。

 

 

 

问题9:第56PPTUPS测试的功函数计算,按公式应该是5.31,为什么是4.14

解答:在本例测试中,样品是半导体材料,计算得到的5.31eV对应于电离势,4.14 eV对应于功函数,具体计算公式如下:

 

问题10:刻蚀后,计算膜厚的公式是固定的么?

解答:在通过刻蚀进行的深度分析中,膜厚是一个比较复杂的问题。通常会采用标准样品如SiO2对仪器刻蚀所用的离子枪标定刻蚀速率,有时会用刻蚀速率乘以刻蚀时间进行计算刻蚀深度。但是刻蚀实验中的材料的组分非常复杂,即使同样的刻蚀参数,实际的刻蚀速率会有很大的差别,所以通常的深度分析会更加关注随刻蚀深度增加,元素组分/化学态的变化趋势。刻蚀后的实际膜厚测量也可以采用表面轮廓仪或AFM设备,通过测量溅射刻蚀坑得到相对真实的溅射速率,然后校准厚度值。

 

 


2020-02-12 10:10:39 607 0
薄膜蒸发器应用及特点

薄膜蒸发器是通过旋转刮膜器强制成膜,并高速流动,热传递效率高,停留时间短,可在真空条件下进行降膜蒸发的一种新型蒸发器。薄膜蒸发器是一种蒸发器的类型,特点是物料液体沿加热管壁呈膜状流动而进行传热和蒸发,优点是传热效率高,蒸发速度快,物料停留时间短,因此特别适合热敏性物质的蒸发。

薄膜蒸发器机组由蒸发器、汽液分离器、预热器三个部件和一只简易分离器组成,蒸发器为升膜式列管换热器。该蒸发器具有生产能力大、效率高、物料受热时间短等特点,适用于制药、食品、化工等行业的稀溶液浓缩,本设备与物料接触部分均采用不锈钢制造,具有良好的耐腐蚀性能,经久耐用,符合药品卫生要求。

性能特点:真空压降小,操作温度低,受热时间短,蒸发强度高,操作弹性大。 在热交换工程中,刮板式薄膜蒸发器得到广乏的应用。尤其对热敏性物料(时间短暂)的热交换,刮膜器有利于热交换的进行,并通过不同的刮膜器设计,能进行复杂产品的蒸馏。


2022-03-14 13:58:06 257 0
金属催化剂的特点及应用
 
2013-12-09 03:13:39 339 1
简述红外测温监测技术的基本原理.红外热成像技术具有哪些特点
 
2016-10-09 06:20:20 512 2
【材料失效分析线上研讨会】答疑汇总&直播回放

2022 年 12 月 13 日,由复纳科学仪器(上海)有限公司主办的【材料失效分析线上研讨会】如期举行。由资 深的电镜专家&离子研磨应用专家朱俊文为大家分享了各类材料的失效案例:


  • 金属材料失效分析

  • 高分子材料失效分析

  • 无机非金属材料失效分析

  • 复合材料失效分析

  • 涂层 / 镀层失效分析

  • PCB / PCBA 失效分析

  • 电子元器件失效分析


此次线上研讨会,吸引了各个材料相关领域研究人员的参加,为大家提供了一个材料失效分析的交流平台。同时大家也提出了一些问题进行探讨和交流,小编对于大家的疑问也进行了汇总,并邀请应用专家进行了答疑。   


Q1

对于高分子膜片,如 PET(聚对苯二甲酸乙二醇酯),如果希望研究其截面的微小缺陷(微米级),有什么好的办法能够保持其断面的完整性,避免样品处理对其实际结构的影响?


A1

PET 基本上是不太好处理,我们以前做过的 PET 大部分是有一些层与层之间要叠加在一起。想要解决这个问题最重要的就是样品处理的方法,一般会比较建议用离子研磨仪来做样品处理,这样才有办法对于 PET 等高分子的多层复合材料去把它的截面及之间掺杂的状况看得清楚,同时也需要搭配一个性能比较优异的扫描电镜,这样才可以看得到类似的高分子的结构。


Q2

离子研磨仪是什么?


A2

离子研磨仪属于一款制样设备,可以想象成简易版的 FIB,利用离子枪给做样品表面的清洁或者切割,这样可以使得样品的横截面裸露出来,重 点不会有任何热、应力以及破环问题。切割尺寸接近于原子状态,所以研磨出来的效果可以控制在纳米的程度。


Q3

离子研磨表面怎么处理?


A3

离子研磨就是用离子束以很低的角度去轰击样品表面,类似我们在做木工时候,用刨刀去切割,使木材的木纹显露出来,而如果我们用锯子去锯木头的时候,就看不到更加细节的截面。离子束跟一般我们做传统的晶相研磨还是有很大的差异,离子研磨性价比高,但需要很专业的处理经验。


Q4

目前离子研磨的宽度范围有大于 1cm 吗?最 大样品尺寸有多少?


A4

目前离子研磨能够处理的样品宽度可以做到厘米等级,最 大的样品尺寸可以做到 5cm,样品宽度可以做到 1.5cm。如果是对样品进行切割,可以做到接近于厘米的等级,大概可以做到几个毫米的宽度。


Q5

离子研磨 (CP) 与聚焦离子束 (FIB) 分别重 点应用于哪些类材料的处理?


A5

总体而言,各有利弊。聚焦离子束有很多种类,一般而言 FIB 主要做精确的定位切割,对于技术要求很高,而且产品的价位也很高,目前大概都百万美金左右。而离子研磨就便宜很多,处理面积也比较大,唯 一的缺点就是无法做到纳米等级。如果定位要做到微米等级,那么一般还是建议使用离子研磨。离子研磨处理样品会比较快,可以制作截面、或表面抛光,应用的范围比较广泛,操作也比较简单,很容易做失效分析。而如果是 FIB 的话,在设备投资和人员培训上要求都很高。


Q6

为什么有时候在离子束(FIB)成像下能看到的细节,譬如脏污,在电子束(SEM)成像却看不到?


A6

离子束的成像跟电子束的成像完全不一样。因为一个是电子源一个是离子源,捕捉的信号也稍微不太一样。基本上离子束的颗粒是比较大的,通常解析度会比较差,结晶相的选择性也是非常非常高的。电子束成像的时候,解析度会很高,但是对于 ECCI 像会比较差。


Q7

有铝铜复合片,复合面铝铜电腐蚀类的 SEM 效果吗?


A7

我们之前做过异金属结合的,通常我们会去把它切开,直接看结合面的情况,通常都会出现扩散,比如铜会扩散到铝层,铝会扩散到铜层。那一般我们会看这个键合线,通常这个键合线的界面不是很清楚。


Q8

铝球周围一圈氧化物分布,Mapping 通常是一个小范围,怎样看一圈呢?


A8

想要看到一个圈,那么我们必须把样品切开。现在很多粉体的研究,喜欢做表面的改性研究。为了进一步研究改性的状态,此时我们需要用离子研磨去把它直接切开,去做横截面的观察,这样就可以很清楚的看到粉体表面所做的钝化层、氧化成或者一些其他的金属层的详细情况。


Q9

通过 SEM 观察薄膜的截面,对硅片样品要如何预处理?


A9

一般情况,这些硅片都会有些填料,想要破片没有那么容易,所以大部分也要利用离子研磨做直接的切割,这样最快而且效果也最 好。


如果您错过精彩的直播,可以识别下方【飞纳云讲堂】小程序二维码,进入观看直播回放,还能查看更多往期精彩的直播内容。


2022-12-27 16:20:19 95 0
三气培养箱技术特点及工作原理

三气培养箱技术特点及工作原理

  1.  CO 2 气体浓度检测采用先进的超声传感器,测定声波在不同CO 2 浓度气体中的传播速度,计算出CO 2 气体浓度。工作时,传感器无机械磨损,响应速度快,可靠性能高,稳定性能好,且使用寿命长。此项可选配进口红外传感器,响应速度更快,度更好。

    2.   O 2 气体浓度检测采用进口长寿命的电化学氧气传感器,具有线性度好,检测准确等特点,寿命长达五年,能充分满足用户需要。此项可选配进口红外传感器,响应速度更快,度更好。

    3.  温度检测全部采用半导体热敏集成型温度传感器,性能稳定,线性度好。独立的水温和门温控制,由五个面的水温和一个面的门温合成工作室温度,准确度高。

    4.  O2气体浓度小于19%时,采用先进N 2 气体,到达O 2 浓度设定值后,再进CO 2 气体的方式,保证CO 2 气体浓度和O 2 浓度的准确性。

    5.  O2气体浓度大于23%时,采用先进O 2 气体,到达O 2 浓度设定值后,再进CO 2 气体的方式,保证CO 2 气体浓度和O 2 浓度的准确性。

    6.  箱内采用微风循环方式,使空气循环接近自然界空气对流,缩短温度、湿度、O 2 浓度和CO 2 浓度的恢复时间,确保温度、湿度、O 2 浓度和CO 2 浓度的均衡性。

    7.  箱门打开时,电子阀自动关闭微风循环自动停止,减少气体损失,可以节约气源,并减少因外界空气进入箱内而造成的污染。

    8.  单独的门温控制系统,使箱内恒温控制极少受到环境温度变化的影响。

    9.  温度、气体浓度,均采用数字显示,门加热、水加热、进气、水位高、低都有LED显示,直观、清晰、准确。

    10.  具有水温,室温,数字等多种保护功能,当显示温度超过预置温度时,可自动切断全部加热电源。另外具有独立的水超温继电保护功能,保证温度绝不超过预置值。

    11.  有足够大的水套容积和良好的保温性能。

    12.  水盘自然蒸发加湿,湿度达到95%

 三气培养箱 技术参数

1.  控温范围  室温 +3℃~60℃(例:温度设定值为37℃,环境温度应小于34℃)

2.  恒温控制精度 ±0.2℃

3.  温度均匀性±0.2℃

4.  O 2 浓度控制范围1.0%--19.8%和23.0%-50.0%(可达到98%)

5.  O 2 浓度控制精度 1~5%时为±0.2%,5%~20%时为±0.3%

6.  CO 2 浓度控制范围 0%--20%

7.  CO 2 浓度控制精度 0~5%时为±0.2%,5%~20%时为±0.3%

8.  电源 220V 50HZ

9.  功率 小于450W

10.  O 2 浓度正常下降至置定值的时间小于10分钟(O 2 浓度为1%时)

11.  CO 2 浓度正常上升至置定值的时间小于10分钟(CO 2 浓度为5%时)


2022-04-25 11:33:18 293 0

10月突出贡献榜

推荐主页

最新话题