拉力试验机:基本原理、使用方法及应用价值
-
引言
拉力试验机是一种用于测试材料拉伸性能的实验设备,常用于评估材料的强度、弹性、韧性等性能。本文将详细介绍拉力试验机的基本原理、使用方法及其优缺点,并探讨其在实际应用场景中的重要性和应用价值。
基本原理
拉力试验机主要通过拉伸试样来测试材料的力学性能。试验机一般由主机、控制系统、检测系统、夹具等组成。在测试过程中,试样被安装在夹具中,然后通过主机施加拉伸载荷。同时,试验机将记录试样的应力、应变、位移等数据,以评估材料的力学性能。
使用方法
使用拉力试验机时,首先需要选择合适的试样形状和尺寸,并将其安装到试验机的夹具中。然后,设置试验机的控制参数,如拉伸速率、加载方式等。在测试过程中,试验机将自动记录数据,并在测试结束后生成测试报告。
拉力试验机具有测试结果准确、操作简便、可重复性强等优点。同时,它也能够提供关于材料力学性能的丰富信息,为材料研究和开发提供指导。然而,拉力试验机也存在一定的不足,如测试结果受试样形状和尺寸影响较大、需要专业操作等。
实际应用
在航空、汽车、机械、电子等领域,拉力试验机具有重要的应用价值。通过拉力试验机的测试结果,可以了解材料在拉伸载荷下的力学性能,进而指导材料的研究与开发。此外,拉力试验机还可以用于评估生产过程中材料的质量控制。
结论
拉力试验机在测试材料力学性能方面具有重要应用价值。它能够提供关于材料力学特性的丰富信息,为材料研究和开发提供指导。尽管拉力试验机存在一定的不足,如测试结果受试样形状和尺寸影响较大、需要专业操作等,但其优点如测试结果准确、操作简便、可重复性强等,使得拉力试验机在航空、汽车、机械、电子等领域中具有广泛的应用前景。未来,随着科学技术的发展,期待出现更加精确、便捷的拉力试验机,为材料研究和开发提供更多有用的信息。
全部评论(0条)
热门问答
- 拉力试验机:基本原理、使用方法及应用价值
引言
拉力试验机是一种用于测试材料拉伸性能的实验设备,常用于评估材料的强度、弹性、韧性等性能。本文将详细介绍拉力试验机的基本原理、使用方法及其优缺点,并探讨其在实际应用场景中的重要性和应用价值。
基本原理
拉力试验机主要通过拉伸试样来测试材料的力学性能。试验机一般由主机、控制系统、检测系统、夹具等组成。在测试过程中,试样被安装在夹具中,然后通过主机施加拉伸载荷。同时,试验机将记录试样的应力、应变、位移等数据,以评估材料的力学性能。
使用方法
使用拉力试验机时,首先需要选择合适的试样形状和尺寸,并将其安装到试验机的夹具中。然后,设置试验机的控制参数,如拉伸速率、加载方式等。在测试过程中,试验机将自动记录数据,并在测试结束后生成测试报告。
拉力试验机具有测试结果准确、操作简便、可重复性强等优点。同时,它也能够提供关于材料力学性能的丰富信息,为材料研究和开发提供指导。然而,拉力试验机也存在一定的不足,如测试结果受试样形状和尺寸影响较大、需要专业操作等。
实际应用
在航空、汽车、机械、电子等领域,拉力试验机具有重要的应用价值。通过拉力试验机的测试结果,可以了解材料在拉伸载荷下的力学性能,进而指导材料的研究与开发。此外,拉力试验机还可以用于评估生产过程中材料的质量控制。
结论
拉力试验机在测试材料力学性能方面具有重要应用价值。它能够提供关于材料力学特性的丰富信息,为材料研究和开发提供指导。尽管拉力试验机存在一定的不足,如测试结果受试样形状和尺寸影响较大、需要专业操作等,但其优点如测试结果准确、操作简便、可重复性强等,使得拉力试验机在航空、汽车、机械、电子等领域中具有广泛的应用前景。未来,随着科学技术的发展,期待出现更加精确、便捷的拉力试验机,为材料研究和开发提供更多有用的信息。
- 熔体流动速率测试仪:基本原理、使用方法及应用价值
引言
熔体流动速率测试仪是一种用于测定热塑性材料熔体流动性质的仪器。它在塑料、橡胶、合成纤维等高分子材料领域中具有广泛的应用价值。本文将详细介绍熔体流动速率测试仪的基本原理、使用方法及其优缺点,并探讨其在实际应用场景中的重要性和应用价值。
基本原理
熔体流动速率测试仪主要通过测量热塑性材料在一定温度和压力下的熔体流动时间来评价其流动性质。测试时,先将试样置于测试仪的熔体通道中,然后对试样施加一定的温度和压力,观察其熔体流出时间。一般来说,熔体流动速率测试仪由加热装置、压力装置、熔体通道、时间测量系统以及数据采集与处理系统等组成。
使用方法
使用熔体流动速率测试仪时,首先需要准备好试样,并将其切成规定尺寸的样品。然后,根据试样的材质和测试要求设置测试温度和压力。接下来,将样品放入测试仪的熔体通道中,开始测试。在测试过程中,需要注意观察熔体流出时间,并记录测试结果。
优点
熔体流动速率测试仪具有测试结果准确、操作简便、可重复性强等优点。同时,它也能够提供关于热塑性材料流变性能的丰富信息,为材料开发和改进提供指导。
实际应用
在塑料、橡胶、合成纤维等高分子材料领域,熔体流动速率测试仪具有重要的应用价值。通过熔体流动速率测试仪的测试结果,可以了解材料的流变性能,进而指导材料的研究与开发。此外,熔体流动速率测试仪还可以用于评估生产过程中材料的质量控制。
结论
熔体流动速率测试仪在测定热塑性材料熔体流动性质方面具有重要应用价值。它能够提供关于材料流变性能的丰富信息,为材料研究和开发提供指导。尽管熔体流动速率测试仪存在一定的不足,如测试耗时较长、需要专业操作等,但其优点如测试结果准确、操作简便、可重复性强等,使得熔体流动速率测试仪在高分子材料领域中具有广泛的应用前景
- 炭黑含量测试仪:基本原理、使用方法及应用场景
炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。
基本原理
炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。
使用方法
使用炭黑含量测试仪需要按照以下步骤进行:
准备样品:将待测1g样品,并按照测试并放入燃烧舟。
开机预热:打开测试仪,通几分钟氮气,设置升温程序。
放置样品:将准备好的样品放入石英管中。
开始测试:按下测试按钮,试验结束后拿出样品。
数据处理:根据公式计算出测试结果。
炭黑含量测试仪的优点包括:
精度高:可以精确测量材料中的炭黑含量。
快速方便:测试速度快,操作简单方便。
适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。
炭黑含量测试仪的缺点包括:
价格较高:仪器价格相对较高,不是所有用户都能承担。
需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。
实际应用
炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。
结论
未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
- 臭氧老化试验箱:基本原理、技术参数、使用方法及注意事项
臭氧老化试验箱是一种专门用于模拟和测试材料在臭氧环境下的老化性能的设备。这种设备广泛应用于橡胶、塑料、涂料等高分子材料的研究、生产和质量控制等领域。本文将介绍臭氧老化试验箱的基本原理、技术参数、使用方法及注意事项。
臭氧老化试验箱的基本原理是利用臭氧的氧化作用,模拟材料在实际使用过程中所受到的臭氧浓度和温度等环境因素,以加速材料的老化过程,从而预测材料在未来的性能变化。
臭氧老化试验箱一般由以下几个部分组成:
箱体:试验箱的主体部分,用于放置样品和臭氧发生器。
臭氧发生器:用于产生一定浓度的臭氧。
温度控制系统:用于控制试验箱内的温度,保证试验的准确性。
湿度控制系统:用于控制试验箱内的湿度,以模拟不同的环境条件。
试样架:用于放置试样的支架,一般可调节高度和角度。
臭氧老化试验箱的技术参数主要包括空气流速、温度、湿度、电源电压等。其中,空气流速决定了试验箱内的氧气浓度,温度和湿度则反映了材料在实际使用中的环境条件。电源电压则直接关系到设备的运行稳定性和使用寿命。
使用臭氧老化试验箱时,需要按照以下步骤进行操作:
接通电源,打开设备开关,检查各部分是否正常工作。
将待测试的材料放入试验箱内,调整试样架的位置和角度。
设置试验箱的温度、湿度和臭氧浓度等参数,启动试验。
观察试样的老化情况,记录相关数据。
试验结束后,关闭设备,取出试样进行后续分析。
使用臭氧老化试验箱时,需要注意以下事项:
设备运行时,不要随意打开箱体,以免发生危险。
试验过程中,应定期检查设备的运行状态,如发现异常应及时停机检修。
试验结束后,应及时清理设备内部的杂物和残留物,保持设备的清洁卫生。
定期对设备进行维护保养,保证设备的正常运行和使用寿命。
臭氧老化试验箱是一种重要的材料老化测试设备,它能够在较短的时间内模拟和测试材料在臭氧环境下的老化性能,为材料的研究、生产和质量控制提供了重要的参考依据。在使用过程中,需要注意设备的运行状态和安全问题,以保证设备的正常运行和使用效果。
- 答疑:UPS/LEIPS基本原理、特点及应用
小伙伴们,上一篇的知识点总结,大家都认真看完了吗?(~ ̄▽ ̄)~
大家提出的问题,老师都一一解答,快来跟我去一探究竟吧!
明天(3月3日)下午三点继续解锁新课程“数据处理:数据处理原则和MultiPak软件功能概述”,如果喜欢我们的课程,欢迎朋友圈分享哦 ̄ω ̄=
- 拉力试验机横梁的基本原理是什么?
- 拉力试验机横梁的基本原理是什么?
- UPS/LEIPS基本原理、特点及应用知识要点
新的一天,新的一周开始啦!小伙伴们是否与我一样开始投入到新的一轮工作与学习中了呢?本周将开始关于数据处理的新一轮课程,明天的课程内容为“数据处理原则和MultiPak软件功能概述”,想要了解的小伙伴们速速调好闹钟,下午三点准时开讲~
学习新知识的同时,也不要忘记温习哟!第三课的ZD老师已总结和归纳好了,我们一起回顾吧!
如果喜欢我们的课程就请多多分享~
有兴趣参加的小伙伴加PHI小助手微信(扫下图二维码)报名即可,PHI小助手会将你拉入微信群。不要犹豫,快来加入我们吧!!
- 什么是单克隆抗体?有何特点及应用价值?
- 电流探头的两种应用形式及使用方法
现在市场上常见的电流探头类型是磁芯电流探头,或夹合式电流探头。这是一种间接电流检测技术,探头夹住带待测导线,以实现非接触性电流测量。探头的输出端会产生与测量的电流振幅成正比的电压信号。从而实现无创测定或隔离测量,过程中探头不会与待测设备进行电气连接。
电流探头的使用方法:
A、电容测试时使用的导线应选用横截面面积05mm2(AWG20)以上的导线。
B、将待测电容连接上导线时要将电容移动至基板的锡面侧,利用A和B方法测定,此外,尽可能的将导线缩短。
电流探头有两种形式,一种特定的探头类型,称为分芯探头。这类探头的线圈放在“U”形芯上,“U”形芯带有一铁氧体滑块,滑块盖住“U”形顶部。这类探头的优点在于,铁氧体滑块可以收缩,使得探头能够方便地卡到测量电流的导线上。在测量完成时,滑块可以收缩,探头可以移到其它导线上。另外一种电流探头是实芯电流转换器。这些电流转换器完全绕在被测导线上。结果,必须断开被测导线,把导线穿过转换器,然后重新把导线连接到电路上,才能安装这些转换器。实芯探头的主要优势是它们体积非常小,提供了非常快的频响,可以测量快速、低幅度电流脉冲和AC信号。到目前为止,分芯电流探头是常用的探头类型,其分为AC型和AC/DC型。
电流探头虽然没有示波器的电压探头那么常见,但是它的作用是其他探头无法代替的。它能够在不破坏导线的情况下测量流经导线的电流。当电流探头与电压探头配合使用时能够测试功率、相位等数据。这对于测试测量系统来说非常的有用。
- 气相色谱仪的使用方法,及使用注意事项?应用范围?
- 热裂解仪(器)进样分析基本原理、技术特点及应用
气相色谱仪–热裂解仪(器)联用,在水运工程、石油化工、有机化学、生物医药、高分子化学、地质勘探、环境保护等领域都得到有效的应用。其主要的工作原理为:有机化合物在严格控制的环境中加热,使之裂解成为可挥发的小分子,采用联用的气相色谱仪分离和检测这些裂解的小分子;由于有机化合物在一定条件下的裂解方式主要取决于分子结构,因此,可以根据其裂解产物的定性定量数据,推断有机化合物的组成和结构。
一、基本原理:
热裂解(分解)是在热能作用下物质发生化学降解的过程。在一定条件下,高分子有机物遵循一定的裂解规律,即特定的样品能够产生特定的裂解产物和产物分布,采用气相色谱分析和鉴定裂解产物,可据此对原样品进行表征。
将高分子样品置于裂解器中,在严格控制的操作条件下,使之迅速高温热裂解,生成可挥发的小分子产物,然后将裂解产物送入气相色谱仪中进行分离分析。因为裂解碎片的组成和相对含量与待测高分子的结构密切相关,每种高分子的裂解色谱图都有其特征,故裂解色谱图又称热裂解指纹色谱图。
二、对热裂解仪的要求:
1、由于裂解温度不同,裂解产物不同,裂解温度控制要精确,可重复进行。
2、不同的物质需要不同的裂解温度,裂解温度要可调。
3、裂解器热容量大,升温速度快。
4、裂解器与接口的体积小,以减小死体积,防止色谱峰展宽。
5、对裂解反应无催化反应,防止歧化反应和二次反应。
三、热裂解仪类型:
1、管式炉裂解器:
管式炉裂解器通常由一个外壁加热的石英管制成,采用电热丝加热,裂解温度在300~1000,恒温精度高。当炉温达到设定温度时,将样品置于铂金小舟内,用推杆将铂金小舟送人裂解炉,样品不与管壁接触。
管式炉裂解器结构简单,可定量进样,操作方便,裂解温度连续可调。但升温速率不可调,死体积大,容易产生二次反应。
2、热丝裂解器:
热丝裂解器通常由直径0.2~0.5mm、长50mm左右的铂丝或镍铬丝绕成螺旋状而成,样品涂在金属热丝上,热丝用稳定电压加热到所需温度,可使样品裂解。
热丝裂解器结构简单,加热时间短,二次反应少。但不易定量进样,一般只用于定性分析。
3、居里点裂解器:
居里点裂解器是一种高频感应加热裂解器,采用铁磁性材料作加热元件。将它置于高频电场中,会吸收射频能量而迅速升温,当达到居里点温度时,铁磁质变为顺磁质,不再吸收射频能量,温度稳定在居里点温度。当切断高频电源后温度下降,铁磁性又恢复。将样品附着在加热元件上,样品可在居里点温度裂解。
不同铁磁质的居里点温度不同,通过调节铁磁质合金的组成可获得所需温度的加热元件。
4、激光裂解器。
四、热裂解仪特点:
1、分离效率高:热裂解气相色谱仪大都使用毛细管色谱柱,可以对复杂的裂解产物进行有效的分离,尤其是高分子有机物之间的微小差异,聚合物材料中的微量组分,都能在裂解色谱图上灵敏地反映出来,找到相应的特征。
2、灵敏度高:热裂解气相色谱仪一般采用氢火焰离子化检测器,灵敏度很高。
3、样品用量少:样品用量一般为μg至mg量级,对只能获得微量样品的检测很有利。
4、分析速度快:典型的分析周期为30min。当裂解产物很复杂时,1~2h可以完成一次分析。
5、信息量大:可以进行定性和定量分析,还可以进行裂解条件与裂解产物的关系、样品结构与裂解产物的关系、裂解机理和反应动力学的研究。
6、应用范围广:适用于各种形态样品,不需要预处理,无论是粘稠液体、粉沫、纤维和弹性体等,还是固化的树脂、涂料和硫化橡胶等都可以直接进样分析。
7、易于普及:裂解进样器结构简单,与气相色谱仪组合在一起就可以进行分离分析。
8、可以和各种色谱仪、光谱仪联接:凡是可以和气相色谱仪联接的光谱仪器,都可以和热裂解气相色谱仪在线联接。
五、应用:
适用于分子量较大、结构复杂、难挥发和难溶解物质的分离分析。
在药物分析中,可采用闪蒸技术分析中草药中的可挥发性成分。所谓闪蒸是指在样品裂解前,用较低的温度(低于样品的裂解温度)对样品快速加热,将挥发性成分蒸发出来,得到一张色谱图。然后在高温下对样品进行裂解,得到裂解色谱图。这样可获得样品中挥发性成分的重要信息,在样品定性鉴定中非常有用。
- 多色荧光原位杂交技术(M-FISH)的基本原理及应用
荧光原位杂交技术(fluorescence in situ hybridization,FISH)是根据核酸碱基互补配对原理,用半抗原标记DNA或者RNA探针与经过变性的单链核酸序列互补配对,通过带有荧光基团的抗体去识别半抗原进行检测,或者用荧光基团对探针进行直接标记并与目标序列结合,利用荧光显微镜直接观察目标序列在细胞核、染色体或切片组织中的分布情况。M-FISH则是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其特点是可将多次繁琐的FISH实验和多种不同的基因定位在一次FISH实验中完成。M-FISH能同时检测多个基因,分辨复杂的染色体易位和微小缺失,区分间期细胞多倍体和超二倍体等。M-FISH用激发光谱和吸收光谱不同的荧光索按一定调色方法标记不同的探针,从而对不同靶DNA同时进行定位和分析,并能对不同探针在染色体上的位置进行排序。
探针荧光素颜色调配的方法有非调色法,混合调色法和比例调色法。这3种调色法中,比例调色法只需要几种荧光素就可标记多种探针,因而更有发展潜力。染色体描绘、比较基因组杂交、光谱染色体自动核型分析、交叉核素色带分析及多彩色原位启动标记等技术都是在M-FISH的基础上发展起来的。
与其他原位杂交技术相比,多色荧光原位杂交具有很多优点,主要体现在:
①宜于多靶杂交,可对同一个细胞学制片进行多个探针杂交;
②通过在同一个核中显示不同的颜色可一次性显示全部的染色体数量或结构的变化;
③能检测到传统显带方法不易发现的亚纤维染色体畸变不仅能够鉴定隐藏的易位和复杂的重拍,而且可以分析与肿瘤发生相关的重要标记染色体及其基因。
目前该项技术目前已广泛应用于动植物基因组结构研究,染色体精细结构变异分析,病毒感染分析,微生态分析,肿瘤遗传学和基因组进化研究等许多领域。
明美MFISH荧光原位杂交分析系统 就是一款专为荧光显微图像的捕捉和处理而开发的实用图像软件。它搭配不同波段光谱滤光片的荧光显微镜以及高灵敏度的相机可对多种探针信号进行检测成像,还有区域自动曝光,自动着色,信号点增强,一键合成多色荧光通道图像,自定义各种颜色的探针,多焦面信号景深叠加,多层图像位置偏移较正等功能。
深圳禾正医院的老师采用了明美的MFISH荧光原位杂交分析系统,检测中用her2/cep17的比值来测定是否有此原癌基因扩增,当HER2/CEP17比值≥2.0时,为HER2阳性;此外老师还定制了双通道荧光模块,可以同时在目镜下观察到红绿两种颜色的信号点,大大提高科室的工作效率。
(来源:http://www.mshot.com/article/903.html 广州市明美光电技术有限公司)
- 答疑:XPS基本原理、技术特点及应用(1)&(2)
PHI CHINA于2月20日、21日下午三点开讲了“XPS基本原理、技术特点及应用(1)&(2)”,相信小伙伴们都有认真听课,因为我们收到了很多提问,那现在就由PHI CHINA的技术团队来为您们一一解答吧!
01 原理相关问题
Q:俄歇电子和荧光产生过程?
A:下图为X射线光电激发及其弛豫过程示意图。在XPS测试过程中,原子芯能级电子吸收X射线被电离,而相应的芯能级会留有空位,此时原子处于激发态会自发地发生弛豫,而退激发回到稳态。弛豫过程分为辐射弛豫和非辐射弛豫,前者发射出荧光,后者发射出俄歇电子。
XPS也会收集到俄歇电子,从而产生俄歇谱图。其中俄歇电子是多个电子参与的退激发过程产生的,在退激发过程中处于高能级的电子可以跃迁到这一空位同时释放能量,当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子出射成为俄歇电子。例如KLL俄歇电子如下图所示:原子中一个K层电子被入射X射线激发成自由电子后在K层产生空位,L层的一个电子跃迁入K层填补空位,此时多余的能量被另一个L层电子吸收产生俄歇电子,相应的俄歇电子标记为KLL。俄歇电子的动能由参与此过程的能级所决定,与入射的光子能量无关,所以可以通过改变入射光子能量,从而调节俄歇电子在谱图中的结合能位置,避开谱图干扰。另外,俄歇电子也可以用于辅助鉴定化学态。
Q:为什么p、d、f轨道都只会有两个裂分峰?
A:这是由于电子自旋-轨道偶合效应导致的,根据总量子数j(j=lL+Sl,S=±1/2)而使电子能级出现裂分。例如对于s轨道,j=1/2,对于p轨道,j=1/2和j=3/2。需要注意的是,对于p、d、f轨道的两个裂分峰的峰面积是存在固定的比例,如下图所示:
Q:每种元素的特征谱峰一定吗?
A:除了H、He和少量放射性元素以外,元素周期表中的大多数元素都有相应的XPS特征谱峰,而且XPS谱峰具有元素“指纹效应”,可以用于鉴定元素的成分。同时原子外层电子结构变化会导致XPS特征谱峰出现有规律的化学位移,所以XPS可以通过观测化学位移,提供与化学态、分子结构或官能团相关的信息。需要注意的是,物种中含有多种组分,可能会存在特征谱峰重叠的问题,所以在判断元素成分和化学态的时候,除了关注特征谱峰外,也需要观察相应元素其他谱峰。
Q:EDS探测深度比较深,不是表面的信息?
A:是的。这是由于两个实验技术的原理不同所导致的,如下图所示:因为XPS检测是出射的光电子,光电子的非弹性平均自由程较小,所以提供的是表面信息;而EDS检测的是出射的特征X射线,而特征X射线的穿透能力可以达到微米,所以提供的是信息深度是微米级别的。这两种实验技术提供互补的信息,可以帮助我们深入了解样品性质。
02 谱图相关问题
Q:文献中Fe2p拟合非常混乱,有的是Fe2+的B.E.比Fe3+更高,有的更低。究竟那个价态更高呢?
A:首先,Fe3+的结合能通常是要高于Fe2+的,但是要注意含Fe物质的具体成分。
这个问题也是XPS谱图解析过程中常见的问题,不同的文献报道的XPS结合能位置会有存在差异,可能的原因如下:
(a)即使都是Fe2+,但是配位的原子不同也会有不同的结合能位置,如下图的FeO、FeCO3和FeSO4;
(b)即使都是FeO,但是不同文献所测试样品形态不同、测试仪器不同、结合能校准方法不同,也会导致Fe2+结合能位置不完全一致;
(c)不排除有些文献的测试结果是不合理的。
基于以上的理解,我们参考文献分析XPS数据时,需要谨慎,选择合理可靠的文献,同时注意文献中的样品信息和测试条件。做XPS测试时,建议同时测试参照样品,可以帮助数据解析。
Q:请问我们送XPS碳材料的样品,测样老师会询问里面的碳是石墨化碳或有机碳,请问其中的区别?
A:首先,测试时要提供给老师尽可能详细的样品信息,有助于测试老师根据样品信息选择合理的测试条件和数据处理方法。碳材料中可能会有不同形式的C物种,例如sp2或sp3,对应物种的结合能位置也是不一样的。另外,XPS数据处理通常会采用C1s谱峰进行荷电校准,将烷烃碳谱峰位移到284.8eV,而不是采用sp2C校准到284.8eV。荷电校准是XPS数据处理中非常重要的一步,我们将在本期网络课程的数据处理课程中进行讲解,请参加相关课程。
Q:老师,请问XPS测出来的数据使用前有必要平滑处理么?如果平滑的话会不会造成某些特征峰的减弱甚至消失呢?那么平滑几次合适呢?
A:首先不建议进行平滑处理,因为平滑处理可能会导致谱图失真,例如谱峰强度或形状发生变化。如果发现谱图信噪很差,建议调整测试参数(如提高Pass energy或者增加测试时间等)来提高信噪比。
Q:请问多重分裂峰产生的原因有哪些呢?多重分裂峰不太清楚,是每个元素都会产生吗?
A:原子外层电子是一个多电子体系,其中存在复杂的相互作用。当原子的价壳层拥有未配对的自旋电子时,即当体系的总角动量j不为零时,那么XPS激发出芯能级电子所形成的空位,会与价轨道未配对自旋电子发生耦合效应,使体系出现多于一个终态,也就是在谱图上出现多个谱峰,称作多重分裂。不是每个元素都产生多重分裂峰,通常稀土金属(4f轨道上有未成对电子存在)的4s能级表现有强的分裂,过渡金属(3d轨道上有未成对电子存在)的3s能级表现有强的分裂,例如Mn 3s。因此利用s能级的多重分裂现象可以研究分子中未成对电子的存在情况,同时帮助化学态鉴别。
Q:谱峰重叠,怎么处理?
A:首先要判断是什么谱峰重叠在一起,可以有以下方法进行处理:
(a)如果是特征谱峰和俄歇谱峰发生重叠,建议更换X射线能量;
(b)如果是比较元素含量,可以选择测试元素的其他谱峰;
(c)进行解谱分析。
Q:卫星峰是什么?对于卫星峰,我们有必要进行分峰分析么?它的相对位置的标准谱有么?
A:XPS谱图中,除了特征谱峰,还存在由于终态效应导致的卫星峰,例如shake up/off峰,这些谱峰也是非常重要,可以帮助鉴定化学态。是否分峰取决于实验需求,可以查找相关文献帮助确定解谱参数,例如对Co2p的解谱,可以参照这篇文献:Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co2p obtained with Al Kα radiation: I: cobalt spine
Q:老师刚才讲到的全谱台阶变高那里说是可能样品受到污染,请问这个污染指的是表面的污染还是内部的?
A:首先更正一下,全谱中本底台阶状升高是由于样品中更深层电子在出射过程中发生非弹性碰撞能量损失所导致,这是光电过程中正常存在的。但是如果样品表面被覆盖或者存在污染层,样品中出射的电子在穿过污染层时,会与污染物发生非弹性碰撞从而导致本底的异常抬高。在XPS测试时,这种本底的异常抬高可以帮助我们判断表面是否被覆盖或者存在污染层。
Q:吸附材料在吸附物质后为啥表面检出量很低?
A:XPS是表面敏感的分析方法,通常探测深度小于10nm。如果材料样品表面存在吸附层,在XPS可探测深度范围内,可检测到的材料含量会减少。如果表面的覆盖层的厚度大于XPS的探测深度,可能导致XPS无法检出到材料的信息。所以XPS测试的样品要求表面是清洁的。
Q:我在做有机物的XPS时会有很多氧的峰,测试过程是抽真空的,这些氧是怎么来的?
A:氧成分的来源有多种可能:
(a)样品含有氧或者易被氧化,在传递到仪器进行测试前就已经含有氧;
(b)测试时,X射线束斑照射到样品以外的区域;
(c)如果测试的是用导电胶粘的粉末样品,XPS可能探测到导电胶中的氧成分;
(d)仪器的真空较差,腔体中氧的含量较高。
如果想要确定具体是哪种原因,需要从样品制备、传样到测试整个流程进行分析,我们在第五节课程中会讲到相关内容,请关注。
Q:XPS测试,重复几次的数据都没有重复的很好,在往高能偏,往往是什么原因造成的?
A:如果每次测试的峰位不重复且偏高结合能,很可能是样品荷电导致的,建议测试时开启仪器的荷电中和功能。
Q:对于宽带半导体,根据O1s的高结合能一侧的Energy loss spectra,为什么可以得到这个材料的禁带宽度?对于过渡金属氧化物,2p-3d共振PES与3p-3d共振PES相比,在表征VB的构成时,有哪些优缺点?
A:(a)O1s的能量损失谱是由于价带电子向导带电子跃迁而产生的,这个跃迁能量对应于Band gap,如下图所示;
(b)从文献结果看,2p-3d共振有着更高的信号强度。但是这个领域接触较少,无法提供更详细的解答,建议多查找相关文献。
03 微区分析相关问题
Q:PHI的仪器集成SXI成像功能?可以当SEM吗?
A:PHI XPS的X射线具有微聚焦扫描功能,X射线的束斑尺寸可以小于10um,所以可以进行点分析、线分析和面分析。PHI XPS的SXI影像是收集的X射线激发的二次电子影像,可以实现对分析区域的准确定位,但是空间分辨受限于X射线的束斑尺寸。然而SEM是采用的高能量电子束,所以空间分辨能力更高。
Q:Mapping适用微区面积范围和分辨率呢?
A:PHI XPS的真实X射线束斑可以达到7.5um, 也可以理解为Z小分辨率。
微区分析的面积范围通常是从100um×100um到500um×500um。
Q:EDS也有mapping,raman也有, 他们的区别是什么?
A:这三种技术的区别主要是来自于他们原理,导致他们在探测的信息和检测的深度上都有差别:XPS检测的X射线激发的光电子,EDS检测的是电子激发的特征X射线,Raman检测的是光子。所以XPS是表面灵敏的分析方法,探测深度小于10nm,可以提供元素成分和化学态信息。
04 刻蚀深度分析相关问题Q:刻蚀深度分析过程?刻蚀的深度测定?
A:(a)XPS是表面分析方法,探测深度通常小于10nm,所以在需要结合离子源刻蚀进行深度分析,例如先用XPS测试表面信息,然后用离子源刻蚀移除表面,之后重复XPS测试和刻蚀过程。
(b)离子源的刻蚀速率会采用标准样品进行测定,刻蚀的深度可以用刻蚀速率x刻蚀时间得到。但是需要注意的是,对于不同材料,刻蚀速率会有较大差别,特别是对于复杂材料会很困难得到的真实刻蚀速率。在深度分析时,通常是关注组分或化学态随刻蚀时间的变化趋势。另外,可以采用参照样品标定刻蚀速率或者通过膜厚仪测试刻蚀坑的深度来计算刻蚀深度。
Q:刻蚀应该会造成新的缺陷,怎么避免呢?
A:这是刻蚀中的常见问题。离子束刻蚀对样品会存在破坏性,如破坏化学键和择优刻蚀,建议根据材料选择合适的刻蚀离子源,尽可能降低对样品的损伤,例如对有机材料进行深度分析时建议选择团簇离子源。另外,可以选择非破坏性的深度分析方法,例如角度分辨的XPS或者硬X射线XPS。
Q:粉末样品深度分析相关问题?
A:采用刻蚀方法进行深度分析,通常是针对薄膜样品。如果粉末样品是由纳米颗粒所组成的,对于刻蚀而言其表面到内部是混乱无序的,所以不建议采用刻蚀方法对粉末样品进行深度分析。如果是具有core-shell结构的样品,建议采用调变入射X射线的能量进行深度分析。
Q:老师怎么调节氩离子团簇聚集程度,直接调节氩气瓶上面的压力吗?怎么知道团簇中原子个数?
A:对于PHI团簇离子枪,可以通过软件直接控制流量计调节团簇离子大小。对于离子个数的测量需要专用的配件。
Q:老师以核壳结构的材料为例子时,为什么要比较两个不同激光源的谱图信息?单独使用Cr激光比较不同深度材料化学结构的差别是不是可以说明了?
A:核壳结构是由核和壳两部分构成,在表征时需要确定核和壳两部分的组成和含量差异。只用单一能量的XPS给出的测试结果,只能说明在这个深度下的元素组分,无法给出组分变化趋势。调变入射X射线能量可以得到不同探测深度的信息,低能量的X射线探测表面信息,高能量X射线探测更深的信息,这也是核壳结构表征中常用的分析方法。
各位小伙伴们,有没有找到您的答案呢?如果还有疑问,欢迎随时提问!接下来2月26日也就是本周三下午三点,将准时开讲“UPS/LEIPS基本原则、技术特点及应用”,一定不要错过哦!
扫码关注PHI与高德
- XPS基本原理、技术特点及应用(1)&(2)知识点总结
“PHI CHINA表面分析技术网络讲堂之光电子能谱ZT”在上周已经开讲两课啦,有90多所高校和科研院所的共计千余名师生参与学习与讨论。就“XPS基本原理、技术特点及应用”内容,主讲老师鞠焕鑫博士给大家作了知识点总结。相信小伙伴们已经迫不及待的想要了解了吧!快快拿起您的纸和笔,让我们一起来划ZD:
疫情虽在,学习不断。希望PHI CHINA的课程可以为小伙伴们增加一些实在又实用的知识。接下来的两周,PHI CHINA将继续为大家献上光电子能谱的ZT讲座,快来为即将到来的开学学习暖暖身吧!
下节课“UPS/LEIPS基本原理、技术特点及应用”在2月26号本周三下午三点准时开讲。
扫码关注PHI与高德
- 激光投线仪的使用方法及应用范围
- 气体发生器基本原理及技术特点
一、氢气发生器原理
以二次蒸馏水为原料,添加10%KOH作为电解质,产生99.999%的高纯氢气.电解质采用新型恒流开关电源,根据用户实际用气量调节输出电流,从而实现流量自动跟踪.并设有过压保护装置,确保使用绝dui安全。
二、氮气发生器基本原理
采用现代燃料电池技术,先将空气中的O2在外加电源的作用下与H2O反应生成OH-,然后在电场力作用下,实现气液分离,最后将OH-还原成O2和H2O,从而将空气中的N2和O2分离。
化学式:O2+2H2O+4e=4OH-
由于采用了优化设计的催化剂,使用提纯后的N2中残氧量极低(3ppm以下),如再经过后期脱氧处理,残养量可进一步降低1ppm以下,因此可以满足各种检测器对载气纯度的要求。
其它微量杂质如CO、H2O等采用物理吸附方法去除。
三、特点
1.使用安全
使用时气压低,关机后残余气量少,并有过压保护装置,使用绝dui安全;
2.操作方便
随开随关,免除搬运之苦,真正一劳永逸;
3.成本低廉
氢气发生器使用过程中只消耗蒸馏水,最da功率150VA;氮气发生器只消耗空气(需另接空气源),最da功率100VA;
4.结构紧凑
外观优美,占地面积小,使实验室实现仪器化;
四、三气发生器使用注意事项
1.开机顺序:
①检察氮气开关阀处于“关”位置(向内);
② 打开空气源开关,空气和氮气压力逐渐上升;
③ 待空气,氮气压力升至0.35MPa时,打开氢气和氮气电源开关;
④待氮气排空30分钟以后,打开氮气开关阀,此时氮气流量由气相色谱仪控制;氢气在流量指示为“000”后可以使用,流量也由气相色谱仪控制;
2.关机顺序:
关机顺序刚好相反,即先关氮气开关阀,再依次关氮气,氢气和空气电源开关。
单独使用氢气时,应先开空气电源开关;单独使用氮气时,也需同时打开氢气电源开关。
注意液体高度,在接近下限时应及时添加蒸馏水,但不要超过上限.建议每半年更换一次电解质.请勿在无液状态下开启氮气或氢气电源开关!
注意干燥管内变色硅胶的颜色(仪器背部左下方的变色硅胶也要注意观察),变为粉红色后应及时更换,方法参见说明书。
在空气潮湿的季节,空气储气罐中会有少量残留水分,可以从仪器背部的"放液口"排出.方法是:在仪器停止工作后,将防液口的密封螺母松开,利用气罐中的空气压力将水分压出,完毕后将密封螺母重新拧好。
在维护仪器时,如需降压,应通过色谱或气源上的流量阀排气,请勿直接从接头处放气,以免压力突然降低,损坏气路元件。
- 水质调查的实际应用价值
- 核酸杂交技术有哪些应用价值?
- 如题,可复制
参与评论
登录后参与评论