仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

TOF-SIMS在光电器件研究中的应用系列之三

爱发科费恩斯(南京)仪器有限公司 2022-12-05 13:11:13 155  浏览
  • 一、引言

    光伏发电新能源技术对于实现碳中和目标具有重要意义。近年来,基于有机-无机杂化钙钛矿的光电太阳能电池器件取得了飞速的发展,目前报道的最 高光电转化效率已接近26%。卤化物钙钛矿材料具有无限的组分调整空间,因此表现出优异的可调控的光电性质。然而,由于多组分的引入,钙钛矿材料生长过程中会出现多相竞争问题,导致薄膜初始组分分布不均一,这严重降低了器件效率和寿命。



    图1. 钙钛矿晶体结构


    二、TOF-SIMS应用成果

    由于目前用于高性能太阳能电池的混合卤化物过氧化物中的阳离子和阴离子的混合物经常发生元素和相分离,这限制了器件的寿命。对此,北京理工大学材料学院陈棋教授等人研究了二元(阳离子)系统钙钛矿薄膜(FA1-xCsxPbI3,FA:甲酰胺),揭示了钙钛矿薄膜材料初始均一性对薄膜及器件稳定性的影响。研究发现,薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化(如图2所示),最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。该研究成果以题为“Initializing Film Homogeneity to Retard Phase Segregation for Stable Perovskite Solar Cells”发表在Science期刊。[1]



    图2. 二元 FAC 钙钛矿的降解机制。(A-H)钙钛矿薄膜的组分初始分布和在外界刺激下的演变行为。(I-N)热力学驱动下,钙钛矿薄膜的物相分离现象的TOF-SIMS表征


    TOF-SIMS作为重要的表面分析方法,具有高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50 nm)能力。在本研究中利用TOF-SIMS对发生老化后(晶体相变)的钙钛矿薄膜进行表征,从2D元素分布图中观察到薄膜中的阳离子Cs与FA同时发生了分离(如图2所示),并形成尺寸为几到几十微米的相,将二者的元素分布图像叠加后(见图2 K),观察到分离后的Cs/FA偏析区域在空间上形成互补,证明了每个区域的组成与其晶体结构相关联。此外,TOF-SIMS 3D影像(图2L至2N)表明,垂直方向分布相对均匀,阳离子在不同深度上的聚集方式与表面类似。TOF-SIMS结合XRD和PL结果证明了由于阳离子的局部聚集,从而导致了相分离。


    此外,从降解初期的FACs钙钛矿薄膜的TOF-SIMS图像中明显能观察到无色区域(见图3A)Cs的信号更强,表明了区域1(与图2A和E中标注位置一一对应)中的Cs+阳离子有迁移到区域2和3,进一步表明了该膜的降解是由Cs偏析和随后的相变所引起的。



    图3. 二元阳离子FACs钙钛矿膜在降解初期的TOF-SIMS图


    该研究采用Schelling的偏析模型,并结合TOF-SIMS及其他实验观察数据结果表明:

    (1)钙钛矿薄膜初始均一性对薄膜的老化行为有显著影响:薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化,最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。

    (2)薄膜均一性的提升将显著减缓其老化速率:通过在钙钛矿前驱体溶液中引入弱配位的添加剂硒酚,有效调控了溶液胶体环境,提升了薄膜均一性。实验结果表明,均一性提升的薄膜在热、光老化条件下,表现了较好的稳定性,在实验周期内未出现显著的物相分离。同时,经过进一步的器件优化,所制备的太阳能电池器件展现了良好的光电性能,在1 cm²器件上,获得了23.7%的认证效率。在不同温度条件下,器件在LED光源持续照射下,也表现了良好的工作稳定性。


    三、TOF-SIMS表面分析方法

    飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:


    (1)兼具高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50nm);

    (2)表面灵敏,可获取样品表面1-2个原子/分子层成分信息 (≤2nm);

    (3)可分析H在内的所有元素,并且可以分析同位素;

    (4)能够检测分子离子,从而获取有机材料的分子组成信息;

    (5)适用材料范围广:导体、半导体及绝缘材料。



    图4. TOF-SIMS可以提供的数据类型


    目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。


    参考文献

    [1] Bai et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells, Science (2022). https://doi.org/10.1126/science.abn3148


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

TOF-SIMS在光电器件研究中的应用系列之三

一、引言

光伏发电新能源技术对于实现碳中和目标具有重要意义。近年来,基于有机-无机杂化钙钛矿的光电太阳能电池器件取得了飞速的发展,目前报道的最 高光电转化效率已接近26%。卤化物钙钛矿材料具有无限的组分调整空间,因此表现出优异的可调控的光电性质。然而,由于多组分的引入,钙钛矿材料生长过程中会出现多相竞争问题,导致薄膜初始组分分布不均一,这严重降低了器件效率和寿命。



图1. 钙钛矿晶体结构


二、TOF-SIMS应用成果

由于目前用于高性能太阳能电池的混合卤化物过氧化物中的阳离子和阴离子的混合物经常发生元素和相分离,这限制了器件的寿命。对此,北京理工大学材料学院陈棋教授等人研究了二元(阳离子)系统钙钛矿薄膜(FA1-xCsxPbI3,FA:甲酰胺),揭示了钙钛矿薄膜材料初始均一性对薄膜及器件稳定性的影响。研究发现,薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化(如图2所示),最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。该研究成果以题为“Initializing Film Homogeneity to Retard Phase Segregation for Stable Perovskite Solar Cells”发表在Science期刊。[1]



图2. 二元 FAC 钙钛矿的降解机制。(A-H)钙钛矿薄膜的组分初始分布和在外界刺激下的演变行为。(I-N)热力学驱动下,钙钛矿薄膜的物相分离现象的TOF-SIMS表征


TOF-SIMS作为重要的表面分析方法,具有高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50 nm)能力。在本研究中利用TOF-SIMS对发生老化后(晶体相变)的钙钛矿薄膜进行表征,从2D元素分布图中观察到薄膜中的阳离子Cs与FA同时发生了分离(如图2所示),并形成尺寸为几到几十微米的相,将二者的元素分布图像叠加后(见图2 K),观察到分离后的Cs/FA偏析区域在空间上形成互补,证明了每个区域的组成与其晶体结构相关联。此外,TOF-SIMS 3D影像(图2L至2N)表明,垂直方向分布相对均匀,阳离子在不同深度上的聚集方式与表面类似。TOF-SIMS结合XRD和PL结果证明了由于阳离子的局部聚集,从而导致了相分离。


此外,从降解初期的FACs钙钛矿薄膜的TOF-SIMS图像中明显能观察到无色区域(见图3A)Cs的信号更强,表明了区域1(与图2A和E中标注位置一一对应)中的Cs+阳离子有迁移到区域2和3,进一步表明了该膜的降解是由Cs偏析和随后的相变所引起的。



图3. 二元阳离子FACs钙钛矿膜在降解初期的TOF-SIMS图


该研究采用Schelling的偏析模型,并结合TOF-SIMS及其他实验观察数据结果表明:

(1)钙钛矿薄膜初始均一性对薄膜的老化行为有显著影响:薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化,最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。

(2)薄膜均一性的提升将显著减缓其老化速率:通过在钙钛矿前驱体溶液中引入弱配位的添加剂硒酚,有效调控了溶液胶体环境,提升了薄膜均一性。实验结果表明,均一性提升的薄膜在热、光老化条件下,表现了较好的稳定性,在实验周期内未出现显著的物相分离。同时,经过进一步的器件优化,所制备的太阳能电池器件展现了良好的光电性能,在1 cm²器件上,获得了23.7%的认证效率。在不同温度条件下,器件在LED光源持续照射下,也表现了良好的工作稳定性。


三、TOF-SIMS表面分析方法

飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:


(1)兼具高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50nm);

(2)表面灵敏,可获取样品表面1-2个原子/分子层成分信息 (≤2nm);

(3)可分析H在内的所有元素,并且可以分析同位素;

(4)能够检测分子离子,从而获取有机材料的分子组成信息;

(5)适用材料范围广:导体、半导体及绝缘材料。



图4. TOF-SIMS可以提供的数据类型


目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。


参考文献

[1] Bai et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells, Science (2022). https://doi.org/10.1126/science.abn3148


2022-12-05 13:11:13 155 0
TOF-SIMS在光电器件研究中的应用系列之二

PART 0
引言  


有机发光二极管(Organic Light-Emitting Diode,OLED)是基于多层有机薄膜结构的电致发光的器件,用作平面显示器时具有轻薄、柔性、响应快、高对比度和低能耗等优点,有望成为新一代主流显示技术。然而,高效率和长寿命依然是阻碍OLED发展的重要因素,因为有机材料易降解和器件界面结构不稳定从而导致OLED器件失效。在此背景下,迫切需要了解器件的退化机制,从而在合理设计和改进材料组合以及器件结构的基础上,找到提高器件寿命的有效策略。



图1. 基于OLED柔性显示器件


 PART 0
TOF-SIMS表面分析方法  

研究有机/无机混合OLED器件的界面效应是提高其性能和运行稳定性的关键步骤。在众多分析方法中,飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是表征有机层及其内部缺陷的有效分析工具。TOF-SIMS是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:

(1)兼具高检测灵敏度(ppmm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50nm);

(2)表面灵敏,可获取样品表面1-2个原子/分子层成分信息 (≤2nm);

(3)可分析H在内的所有元素,并且可以分析同位素;

(4)能够检测分子离子,从而获取有机材料的分子组成信息;

(5)适用材料范围广:导体、半导体及绝缘材料。


目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。


PART 0
应用简介  

基于Alq3(8-hydroxyquinoline, aluminum salt,8-羟基喹啉和铝,分子结构见图2)的OLED器件,因其宽视角、高亮度和低功耗的特性,成为下一代平板显示器最有潜力的备选之一。这类器件具有“三明治”结构,在两个电极之间夹有多个有机层。对于OLED器件的研究不仅专注于探索有机材料,还要进行失效分析来确定故障(如显示黑点)产生的原因。在这里,我们展示了TOF-SIMS 对Alq3有机层进行了全面表征。



图2. Alq3的分子结构式


图3和图4均为市售Alq3材料在正离子模式下的TOF-SIMS谱。TOF-SIMS结果表明,利用Au+和Ga+离子源均可检测到Alq3碎片的质量特征峰,但Au+离子源对这些碎片的灵敏度更高。比如,对比相同离子电流下的Au+和Ga+离子束对质量数为315的Alq2分子碎片的灵敏度,发现前者灵敏度提高了23倍。此外,只有Au+离子源才能检测到质量数超过1000的质量片段。这些质谱体现出使用Au+源分析Alq3这类分子量较大的材料的优势。


图3. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Au+,22 keV;样品电流:0.07 pA;分析面积:300 μm2;数据采集时间10 min



4. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 keV;样品电流:0.3 pA;分析面积:300 μm2;数据采集时间10 min


此外,Alq3薄膜必须在高真空条件下沉积才能保持其完整性。为研究大气对Alq3薄膜的影响,分别对暴露在空气前后的样品进行了TOF-SMIS表征,结果如图5所示。TOF-SMIS证明了暴露大气后Alq3薄膜发生了分解,并且随着暴露时间的增长,AlqO2质量片段的强度增加,表明水分和氧气会显著改变Alq3的组成。



图5. 负离子模式下Alq3在大气中暴露前后在的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 kev;分析面积:300 μm2


总之,三重离子束聚焦质量分析器(Triple Ion Focusing Time-of-Flight,TRIFT)结合Au+离子源能显著提高仪器的灵敏度和降低本底,增强TOF-SMIS检测Alq3等高质量数(大分子)材料碎片的能力。


2022-12-05 13:08:46 240 0
TOF-SIMS、XPS和UPS/LEIPS在全固态电池界面研究中的应用

背景简介

        可充电锂离子电池 (LIB)具有工作电压高、能量密度大、循环寿命长、无记忆效应等优点,自问世以来已逐渐替代传统可充电电池(如铅酸电池、镍氢电池、镍镉电池),并成为现代社会中不可或缺的一部分:由于锂离子电池在能量密度上有着显著的优势,它被广泛用于笔记本电脑、智能手机、相机等大多数移动电子设备;大容量锂离子电池已在电动汽车中使用,将成为21世纪电动汽车的主要动力电源之一。

但是,在电动汽车 (EV) 或插电式混合动力汽车 (PHEV)中使用现有的锂电技术会带来一些安全隐患:由于目前市售的锂离子电池均含有机液态电解质,这些有机物分解电压较低、易燃易爆,在高温环境下稳定性较差。全固态电池 (ASSB) 包括电解质在内的所有组件都是固态的,在安全性和热稳定性上有着公认的优势,因此,全固态电池有望成为下一代高性能储能电池然而,固体电解质(SE)和电极界面处的内阻是ASSB实际应用的最大障碍之一,该界面处的内阻限制了锂离子在充电/放电循环期间的传输效率。尽管目前已经对ASSB的SE/电极界面进行了大量研究,但界面阻抗的形成机制仍不清楚,需要进一步研究SE和电极之间的相互作用。

             在本案例中,我们结合飞行时间二次离子质谱 (TOF-SIMS)、X射线光电子能谱 (XPS)、紫外光电子能谱 (UPS) 和低能反光电子能谱 (LEIPS) 来表征全固态电池中LiCoO2正极和LiPON电解质界面,获取了SE/电极界面处的化学成分、化学态信息,并对该界面处的价带最大值 (VBM) 和导带最小值 (CBM) 进行了测定。


图1 ULVAC-PHI最新一代TOF-SIMS、XPS产品


样品信息

         在这项研究中,所测试的样品是由金属锂负极、LiCoO2正极和LiPON电解质组成的ASSB薄膜电池。将 Pt/Ti 层涂覆在玻璃上作为正极集流体 (CCC),再使用射频 (RF) 叠加直流 (DC) 溅射将 LiCoO2 沉积在 CCC 表面。沉积后的LiCoO2在空气中500℃环境下退火10小时使其结晶。LiPON薄膜是在0.3 Pa的氮气环境下,通过使用功率为2 kW的Li3PO4 靶材进行射频溅射制备。靶材与基板之间的距离为120 mm,LiPON沉积过程中的最高温度由贴在基板上的温度标签(TEM-PLATE,Palmer Wahl Instruments, Inc.)记录。尽管基板下方装有冷却系统,但在2小时沉积过程中最高温度仍可达到 200℃。最后,通过涂覆金属锂负极、负极集流体和保护层完成电池装置。电池横截面结构如图2所示,LiPON和LiCoO2层的厚度分别为2.2 µm和5.7 µm。电化学阻抗谱测量结果表明,该器件在LiPON/LiCoO2界面处存在内阻。

图2 FIB切割处理后的ASSB纵切面SEM影像,从上自下分别为LiPON电解质、LiCoO2正极、Pt/Ti正极集流体和玻璃基板


测试条件

          使用PHI Nano TOF 2和PHI VersaProbe 3分别对LiPON/LiCoO2界面进行TOF-SIMS分析以及XPS、UPS/LEIPS测试。详细的测试条件见表1

4.结果与讨论

4.1 TOF-SIMS分析

         图3展示了不同厚度的LiPON/LiCoO2界面处TOF-SIMS深度剖析结果。当LiPON厚度为2.2 μm时,在LiCoO2层中,观察到Co+强度呈阶梯式分布,该层能够分为两个区域:在Co+ 强度较低的区域,Li3O+相对较高,值得注意的是,此时Li3O⁺位于界面附近的LiCoO2层中。TOF-SIMS结果表明,在LiPON/LiCoO2界面附近存在具有特定化学状态的中间层。不过有趣的是,当LiPON厚度为100nm时,LiPON/LiCoO2 界面却没有观察到明显的中间层。

         尽管在2.2 µm厚的 LiPON/LiCoO2界面上观察到了非常独特的化学状态,但在100 nm厚的LiPON/LiCoO2样品中却没有观察到类似的现象。接下来,我们用XPS研究了LiPON膜的厚度差异对界面化学性质的影响。

不同厚度LiPON/LiCoO2样品的TOF-SIMS深度剖析结果:(a)2.2 μm(b)100 nm

 

4.2 XPS分析

         为了探究制造过程中热量对LiPON固态电解质层的影响,这里我们使用加热样品托在XPS分析腔体中对100 nm厚的LiPON/LiCoO2样品进行加热,温度控制在200ºC下保持2小时,之后冷却至室温进行XPS分析,该加热条件模拟了薄膜固态电池制造过程中基板的温度变化。图4(a)展示了加热前LiPON/LiCoO2样品表面的XPS精细谱结果,在加热前,在Co 2p3/2谱图中可以观察到来自Co3⁺的卫星峰,表明在沉积100 nm厚的LiPON薄膜后,样品表面仍存在少量的LiCoO2,这主要是因为LiCoO2的表面粗糙度约为100 nm,因此在表面检测到1.8% Co(详见表2);在对样品加热后,如图4(b)所示,Co 2p3/2谱图中未能观察到Co3⁺卫星峰并出现了金属Co的信号,但在对LiCoO2表面进行相同的热处理时,Co的化学状态却保持为 Co3+。上述结果表明,在加热过程中LiPON和LiCoO2之间会发生一些相互作用。

层厚为100 nmLiPON/LiCoO2样品XPS窄谱结果:(a)加热前;(b)加热后;(c)LiCoO2标样图谱

         表2展示了该样品加热前后表面XPS精细谱数据的定量分析结果:N/P的浓度比为0.49,加热前后几乎没有变化,而O/P比从3.5增加到3.8;这表明在加热过程中有氧原子结合到LiPON中。据此,我们可以得知Co的还原发生在界面附近的LiCoO2层内。综上所述,受薄膜固态电池制造环境中温度的影响,SE/正极界面处化学成分和化学态会发生变化,这些界面处的化学成分和化学态的变化可能会导致界面电阻的增加。

4.3 UPS/LEIPS分析

        为了测量LiPON和LiCoO2的能带结构,在本实验中制备了单层的LiPON和LiCoO2,并使用UPS和LEIPS测定其VBM和CBM。LiCoO2和LiPON表面的UPS/LEIPS测试结果如图5所示,通过UPS/LEIPS分析可以很全面地表征两种材料的电子能级结构。

5 UPS/LIEPS分析结果:(a) LiCoO2(b) LiPON

         图6显示了两种材料的能带结构相对于真空能级的示意图。从结果上可以看出,由于LiCoO2的费米能级低于LiPON的费米能级,因此,在LiPON沉积到LiCoO2上的初始阶段,LiPON中的电子扩散到了LiCoO2中,这些电子可能诱导了Co的还原。此外,温度升高可能会促进LiPON 和LiCoO2之间的相互作用。如果可以在LiPON沉积过程中抑制温度的升高,则可以防止Co 还原。

图6 LiCoO2和LiPON电子能级示意图


5.小结

        利用 TOF-SIMS、XPS 和 UPS/LEIPS多种表面分析技术对薄膜固态电池中SE和正极的界面进行了详细表征,研究了SE/正极界面处的内阻形成机制,获得了以下信息:

(1) TOF-SIMS分析:深度剖析结果表明,由于固态电解质LiPON蒸镀沉积过程中会累积热量,从而使得温度升高,高温下SE/正极界面处的化学成分发生了变化:在沉积了2.2 μm的LiPON后,下方的正极材料LiCoO2出现了分层现象。

(2) XPS分析:XPS精细谱和定量分析结果表明,在LiPON的制造过程中,可以从下方的LiCoO2中引入氧原子,使得Co从Co3+还原为Co0+。该副反应会进一步导致LiCoO2的分解。

(3) UPS/LEIPS分析:能级排列分析结果表明,从LiPON到LiCoO2的电子扩散可能触发了Co的还原。此外,制造过程中温度的升高促进了LiPON和LiCoO2之间的相互作用。因此,对于这类薄膜固态电池而言,抑制Co还原将是最小化内阻的关键因素。

        全面的表面分析是材料评估的关键,TOF-SIMS、XPS、UPS/LEIPS可以提供有关ASSB的详细信息,可进一步了解 SE/电极之间的相互作用,这对于全固态电池生产方法的评估与改进具有重要意义。

 

此研究工作由ULVAC-PHI实验室的应用科学家Shin-ichi Iida团队完成。

文章来源:

https://doi.org/10.1116/6.0001044



2022-05-10 16:51:04 255 0
光电器件的光电器件的组成
 
2018-12-09 11:11:42 282 0
高光谱在农业研究中的应用

写在前面的

① 水稻高产栽培是解决世界范围内日益增长的粮食需求的有效途径,而对高产水稻进行正确分类是育种的关键。

② 然而,在育种项目中人工测量耗时、成本高、产量低,这限制了在大规模现场表型的应用。

③ 因此,研究者开发了一种低成本、高通量表型分析和无损检测的方法,将无人机高光谱测量和深度学习相结合,以提高水稻育种效率。

 

 

研究背景

水稻是世界上主要的栽培作物之一,是许多国家的主要粮食来源。水稻的种植面积仅占耕地总面积的7%,却养育着21%的人口。近年来,粮食生产增长速度明显放缓,而世界一些地区的粮食需求却在增加。

 

在ZG,预计到2030年,对大米生产的需求将增加约20%,巨大的需求遇到了巨大的挑战,劳动力人口减少,耕地质量下降,水资源短缺,气候变化等。因此,选育高产水稻品种,提高单位产量,是解决粮食需求缺口的有效途径。

 

在水稻育种过程中,准确地预测产量是高产品种筛选的关键,而迄今为止,该工作很大程度上依赖于人为经验评估,存在主观随意性和不能规模化等限制。因此,高通量表型分型系统正在迅速发展,在许多育种项目中,遥感工具如RGB相机和多光谱、高光谱、荧光和热传感器都被用于数据采集。随着无人机技术和光谱成像技术的进步,基于无人机的高光谱相机在农业生产中的应用越来越广泛。

 

基于无人机的高光谱图像数据采集

近日,Plant Phenomics在线发表了宁夏农林科学院农作物研究所、福建农林大学林学中`心、中科院地理信息研究所合作的题为Classification of Rice Yield Using UAV-Based Hyperspectral Imagery and Lodging Feature的研究论文。

 

研究者首先按照亩产将13个宁夏北方区试中早粳中熟组水稻划分为高产、中产和低产三个类别。而后利用DJI M600 Pro无人机,配备GaiaSky-Vis&Nir高光谱相机采集高光谱图像,并结合水稻后期倒伏特征,借助机器学习算法(XGBoost)构建水稻产量类别检测模型。该模型对在试验区的13个水稻品种产量进行预测,结合实际的产量进行比较发现该模型对高产品种的识别具有极高的准确度。

 

▲试验区分布图

 

该高光谱相机的分辨率为960×1057像素,在飞行高度为90m时的空间分辨率为4.5cm,其波长范围从400到1000nm,光谱分辨率为3.5nm,每张图像的曝光时间为7s。水稻光谱曲线与周围土壤不同。在数据采集前,研究者们对农田进行了检查,确保稻田中只有水稻,没有其他杂草,避免干扰高光谱数据。

 

高光谱图像预处理工作流程包括数据校准、噪声,背景去除和ROI的选择。研究者还进行了随机非重复采样、植被指数计算和数据降维。将高光谱数据、植被指数和倒伏特征组合成一个数据库,ZH将数据分为训练库和测试库。

 

▲高光谱处理流程及各种分析策略的模型评估

 

由于倒伏标记对更好地估计产量有重要意义,本研究同时设计了基于深度学习的倒伏检测模型来对水稻的倒伏特征进行量化,并获得了较高的倒伏预测准确度。结果表明,利用深度学习技术实现水稻倒伏的自动识别是可行的。

 

▲利用微调技术自动识别水稻倒

 

Gaia-Vis&Nir作为针对植被、农作物(小麦、玉米)等理化、生理指标长期监测系统,采用了高灵敏度、高光谱分辨率、宽光谱范围的探测器。在ARM 系统下对探测器、温度传感器、制冷系统、采集系统、转镜结构、电子Shutter、辅助拍摄区域视频监控等功能的控制。

 

反射光谱测量的是植被生化组分等对入射光谱的吸收信息,能够反演植物群体的生化组分浓度信息。通过获取植被冠层在350nm- 1700nm范围内的反射光谱信息,可反映植被冠层的生长状态及生化组分信息。

 

例如,利用作物水分敏感波段960nm/1450nm处的反射率可判断作物叶片、冠层的含水量关系。综合考虑叶片内部结构、叶片水分含量以及干物质等的影响,利用1600nm与820nm的反射率比值建立与等效水厚度EWT(Equivalent Water Thickness)的相关性。

▲Gaia-Vis&Nir植被冠层可见&近红外反射光谱测试、太阳光诱导叶绿素荧光测试系

 

2021-04-15 15:13:52 411 0
分析在圆柱工件检测装置中光电器件可以选用什么器件说明原理
 
2017-07-16 11:17:33 480 1
光电检测器件中,光电子发射器件、光电导器件和光生伏特有何不同
 
2018-03-25 03:20:50 524 1
光电式传感器在工程机械中的应用,举例说明?
 
2011-05-03 21:08:06 247 1
显微CT在齿科研究中的应用

显微CT分析可用于牙科研究中的各种应用,如牙釉质厚度、根管形态、根管预备、颅面部骨骼结构、显微有限元建模、牙体组织工程、牙硬组织矿物密度及种植体等方面。它可以提供高分辨率图像以及牙齿、骨骼和植入物的定性和定量分析。      

根管是一种孔隙,这种在牙齿中间的低密度空间对牙髓病的研究起了可探索的方向。显微CT在牙科填料的研究上,特别适用于三维定量评价根管充填物

牙釉质厚度在人类进化中具有分类学和系统发育价值。显微CT有效且无损的技术特性被用于测量各种考古标本的牙釉质厚度。在临床研究中,牙釉质厚度被认为对于咬合负荷方案的解释具有重要意义。

 

实例2:大鼠下颌骨和舀齿

大鼠或小鼠下颌骨和臼齿在牙周病和其他牙科相关领域的许多研究模型中有着重要价值。通过显微CT对动物下颌骨和牙齿的测量研究,可进一步分析牙周生物型各特征之间的相关性,为口腔美学修复、种植ZL方案的选择、ZL预后的判断以及LX的评估提供理论基础

 

实验设备:VENUS® Micro-CT 

            中文名:桌面型高分辨显微CT

            型号:VNC-100

影像软件:Avatar 1.3 (平生YL科技)


2020-05-27 09:35:21 351 0
直播预告 | 半导体材料与器件研究与应用

半导体材料与器件是现代自动化、微电子学、计算机、通讯等设备仪器研制生产的基础材料及核心部件,具有专门的生产设备、工艺和方法,在现代各方面得到大量的研究和应用。作为现代信息技术产业的基础,半导体产业已成为社会发展和国民经济的基础性、战略性和先导性产业,是现代日常生活和未来科技进步必不可少的重要组成部分;伴随着全 球科技逐渐进步,全 球范围内半导体产业规模基本都保持着持续扩张态势。


为加速国内半导体材料及器件发展,促进国内半导体材料与器件领域的人员互动交流,推动我国半导体行业的高质量发展。TA仪器将参加2022年12月20日举办的第三届半导体材料与器件研究及应用”主题网络研讨会,围绕半导体行业材料的力学及热性能评估展开。材料的玻璃化转变、热分解温度、热膨胀系数、吸湿性、模量等参数,决定了材料的稳定性和最 终使用性能,报告也将介绍如何使用热分析和力学表征设备得到这些重要相关参数。  


相信这些热点议题,将为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个非常好的学习交流机会。




讲座预告

 讲座时间:

  • 2022年12月20日(周二),10:00--10:30


 讲座主题:

  • 半导体材料的力学及热性能评估 — Thermal analysis and beyond

 主讲人:


苏思伟

TA仪器热分析高级技术专家


北京航空航天大学材料科学与工程学院硕士,现任美国TA仪器热分析高级应用专家。负责中国南方区的热分析应用技术支持,教授热分析技术培训课程几十场,长期从事各类材料的热分析、力学性能表征及失效分析等工作。以第 一作者身份发表在《Matter》的仿生材料研究被《每日科学》等多家国际媒体报道。


2022-12-18 15:00:35 101 0
用户成果赏析 | 深圳清华应用TOF-SIMS研究锂金属电池电解质中溶剂化机制

锂离子电池(LIBs)在历经几十年的快速发展后,其能量密度已接近理论极限(300 Wh kg-1),这促使了锂(Li)金属化学的复兴。实际上,由于锂金属电池(LMBs)存在脆弱的固体电解质界面(SEI)和脱溶时效等因素,导致枝晶生长和与集流体分离的非活性Li(也称为“死锂”)的形成,使LMB的实际应用一直停滞不前。


电解质直接影响界面处锂离子(Li+)的SEI化学和脱溶动力学。通常,会通过增加盐/配位溶剂的比例,即高浓度电解质(HCE)和局部高浓度电解质的策略来生成富含无机物的SEI以用于快速稳定的Li+传输,从而改善LMBs的电化学性能。然而,高成本和复杂的制备工艺使这一方案仍处于起步阶段。最 近,弱溶剂化电解质(WSE)被认为是调节溶剂化鞘层的一种经济有效的方法。溶剂分子与Li+离子的配位模式可能对Li+离子在溶剂中的配位具有重要意义,然而目前受到关注很少。


近日,清华大学李宝华教授联合昆明理工大学王贤树特聘教授等人提出了一种基于Li+和溶剂的双/三齿螯合来调节溶剂化结构的电解质设计策略,并结合DFT计算、FTIR、LSV、SEM、TEM、X-ray CT、TOF-SIMS(PHI Nano TOF II)XPS(PHI VersaProbe 4)等技术验证了这一新策略的有效性。即新开发的双(2-甲氧基乙氧基)甲烷溶剂具有多个氧配体位点,可以使更多的阴离子进入Li+溶剂化鞘层,从而提高界面的化学稳定和促进快速脱溶。此外,该电解质与高负载正极和锂金属负极还具有良好的相容性以及较宽的温度适应性。这种对电解质工程的全新见解为实用的高性能锂金属电池提供了指导。该项研究以题为“Unique Tridentate Coordination Tailored Solvation Sheath Towards Highly Stable Lithium Metal Batteries”发表于国际顶 级期刊《Advanced Materials》。


图1. 锂金属负极的界面化学。(a-d)C2H-和LiF2-的TOF-SIMS 3D重建图,展示了分别从具有(a,c)LiFSI-DME和(b,d)LiFSI-BME电解质的循环Li|| Li电池中回收的Li负极的SEI结构和化学性质。(e,f)通过TOF-SIMS测量的C2H-和LiF2-相应的深度曲线。在(g,i)LiFSI-DME和(h,j)LiFSI-BME电解质中在Li金属负极上形成的SEI层的(g,h)C1s和(i,j)F1s XPS深剖结果。(k,i)在(k)LiFSI-DME和(i)LiFSI-BME电解质中的Li沉积行为和SEI形成的示意图。


为了分析与不同Li+溶剂化鞘相关的SEI层的化学成分分布和微观结构,对循环50次后从Li||Li电池上拆下的Li箔进行了TOF-SIMS表征(见图1a~f)。结果表明SEI主要由碳酸盐分解产生的有机物组成,此外,大量的LiFSI参与了负极|电解质界面的形成。为进一步验证这一推断,该项工作中还做了详尽的XPS分析(见图1g~j)。在LiFSI-DME电解质中,形成的SEI主要由有机物种和少量无机物种组成。而在LiFSI-BME电解质中形成的SEI中检测到更多的无机成分(LiF和Li2CO3),以及更薄的有机外层。通过TOF-SIM结合XPS,成功构建了在LiFSI-DME(见图1k)和(LiFSI-BME(见图1i)电解质中的Li沉积行为和SEI形成的示意图,有助于解析锂负极界面的形成过程。


ULVAC-PHI作为全 球技术领先的表面分析仪器厂商,一直致力于开发和制造XPS、AES、TOF-SIMS、D-SIMS以及多种功能配件,旨在提供最 先 进的技术和最 优质的服务,并期盼与我们的用户共同推动表面分析技术的应用和发展,以及提升大型科学仪器的“创新服务产出”水平。


参考文献

[1] Wu, J., Gao, Z., Tian, Y., Zhao, Y., Lin, Y., Wang, K., Guo, H., Pan, Y., Wang, X., Kang, F., Tavajohi, N., Fan, X. and Li, B. (2023), Unique Tridentate Coordination Tailored Solvation Sheath Towards Highly Stable Lithium Metal Batteries. Adv. Mater.. Accepted Author Manuscript 2303347. DOI: 10.1002/adma.202303347.


2023-06-15 16:15:31 203 0
转化医学系列网络讲座 | 小动物多模态成像技术在药物研究中的应用

 

      本期webinar邀请到的是军事科学院军事医学研究院辐射医学研究所抗辐射药物研究室,副研究员李琳娜博士。李博士毕业于军事医学科学院生化与分子生物学专业。2011-2013年在美国德克萨斯大学布朗医学ZX做博士后,主要从事激酶组学和肿瘤转移相关研究。目前的研究工作主要包括,肿瘤转移相关激酶的筛选鉴定、小动物多模态成像技术的研究和应用、药物的临床前筛选评价。ZD关注各类肿瘤模型、候选物成药性和临床前评价阶段面临的理论和技术问题。

讲座题目:

小动物多模态成像技术在药物研究中的应用

讲座时间:

2019年6月13日14:00-15:00

主讲人:

李琳娜 博士

讲座形式:

网络讲座,手机或PC即可参与

(会议链接和如下报名链接相同)

内容简介:

以1.1类创新药物研发为线索,结合16年肿瘤药理的研究经验,介绍分享新药研究申报过程中,荧光标记药物在药代研究中的特殊作用;

生物发光肿瘤模型在药效研究中的独特优势;

肿瘤EMT研究中新模型创造的新突破;

两药合用定量计算时生物发光肿瘤模型的特别贡献。

即刻报名:

扫描下方二维码,即刻报名吧!

 

更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!

 


 

关于珀金埃尔默:

珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。

了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn

 

 


2019-06-10 13:41:19 292 0
光电编码器在protel里的名称是什么?是哪个器件?
 
2011-06-14 01:46:12 354 2
【AM-AN-22025A】标准粒子在光散射研究中的应用

全文共1834字,阅读大约需要6分钟


关键词:标准粒子;米氏散射


光的散射(scattering of light)是指光通过不均匀介质时一部分光偏离原方向传播的现象。偏离原方向的光称为散射光。散射光频率不发生改变的有瑞利散射、米氏散射和大粒子散射;频率发生改变的有拉曼散射、布里渊散射和康普顿散射等。而标准粒子在光散射研究领域一般研究的是粒子的瑞利散射、米氏散射和大粒子散射,这三种散射划分是根据入射光λ与散射粒子的直径d之间的比例大小来确定的:


①当散射粒子的直径d与入射光波长λ之比(d/λ)很小,即数量级显著小于0.1 时,则属于瑞利散射,散射光强与波长的关系符合瑞利散射定律,即散射光强与入射光的波长四次方成反比,与粒径的六次方成正比。


②当散射粒子粒径与光波长可以比拟(d/λ的数量级为0.1~10)时,随着粒子直径的增大,散射光强与波长的依赖关系逐渐减弱,而且散射光强随波长的变化出现起伏,这种起伏的幅度也随着比值d/λ的增大而逐渐减少,这种散射称为米氏散射。


③当粒子足够大时(d/λ>10),散射光强基本上与波长没有关系,这种粒子的散射称为大粒子散射,也可称之为衍射散射(菲涅尔衍射与夫琅禾费衍射)。


瑞利散射可以说是米氏散射理论模型在小粒子端的近似形式,而衍射散射也可以说是米氏散射理论模型在大粒子端的近似形式,接下来我们将详细了解标准粒子应用于米氏散射理论对其光散射特性研究中,入射光波长、标粒直径以及入射光偏振角对散射光强的影响。


1

入射光波长对散射光强分布的影响

图1.1 是相对折射率m=1.589/1.333,标准粒子直径d=2μm,入射光偏振角φ=45°时,由Mie散射理论及其他相关公式编程计算得到的散射光强与散射角之间的变化关系曲线。对于直径为2μm的聚苯乙烯微球在水中的散射情况,入射光偏振角为45°时,随着入射波长λ的增大,散射光强由主要集中在前向小角度内(波长λ为0.2um时散射光强主要集中在10°散射角内)逐渐变为集中在前向稍大角度内(波长λ为0.8um时散射光强主要集中在30°散射角内),若继续增大波长,散射光强集中的角度也将继续增大。从图1.1可以看出,波长较短时散射光强主要集中在前向小角度内,并且波长越短散射光强集中的角度越小。



图1.1:当m=1.589/1.333,d=2μm,φ=45°时,对应于不同的波长,散射光强与散射角间的关系曲线。


聚苯乙烯微球直径对散射光强分布的影响

图2.1是用可见波段中的0.65μm波长的入射光,在偏振角为45°时,聚苯乙烯微球在水中的散射光强与散射角的变化关系曲线。由图可以看出,微粒直径越大散射光强越集中分布在前向小角度内,粒径大于2μm的粒子的散射光强主要集中在前向散射角约20°内,因此在此种条件下收集前向小角度的散射光强即可获得粒子的较好信息。


图2.2是入射光波长为6μm,偏振角45°时,聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可知,所用波长较大时,较大粒子的散射光强不再集中在前向小角度内而是集中的角度逐渐变大,例如粒径大于8μm的粒子的散射光强主要集中在前向散射角约40°内。


图2.1:当m=1.589/1.333, λ=0.65μm, φ=45°时,对应于不同的微粒直径,散射光强与散射角间的关系曲线。 


图2.2:当m=1.589, λ=6μm, φ=45°时,对应于不同的粒径,散射光强与散射角间的变化曲线


入射光偏振角对散射光强分布的影响

图3.1是入射光波长为0.65μm,直径为0.2μm的聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可以看出,此种情况下入射光的偏振角不同散射光强与散射角间的关系曲线有很大变化,散射光强分布比较分散,说明此时散射光强的角分布与偏振光的偏振角有关。


图3.1 当m=1.589, λ=0.65μm, φ=0.2μm时,对应于不同的偏振角,散射光强与散射角间的变化曲线。


结论

以上为应用米氏散射理论针对聚苯乙烯微球标准粒子的光散射性质进行的分析,得出以下结论:


(1)波长较短时散射光强主要集中分布在前向小角度内,并且波长越短散射光强集中分布的角度越小。收集前向小角度的散射光可大致反映粒子散射信息。


(2)进行聚苯乙烯微球标粒散射方面的研究时,应该选择可见光波段中波长较短的作为光源,这样既可以得到较好的粒子散射信息,又可以避免光源对人体造成伤害。


(3)粒子直径较大时散射光强主要集中分布在前向小角度内,并且粒子直径越大散射光强越集中分布在小角度内;若所用波长较大时,较大粒子的散射光强不再集中分布在前向小角度内而是集中分布的角度逐渐变大。


参考资料

1.李建立.基于光散射的微粒检测.烟台大学理学院硕士论文,2009:22-25.


2023-01-04 16:50:04 122 0
高压放大器ATA-2021H在扫描光纤激光器研究中的应用

实验名称:高压放大器在新型窄线宽波长扫描光纤激光器研究中的应用

实验目的:根据仿真参数进行DCR-CC滤波器的搭建和实验验证。并搭建了基于DCR-CC滤波器和C+L波段EDFA的单纵模窄线宽波长扫描光纤激光器并探究其性能。

实验设备:滤波器,函数发生器,高压放大器ATA-2021H等

实验过程:

1.DCR-CC搭建与表征;

采用腔长分别为50.70 cm和 52.00 cm的参数搭建DCR-CC滤波器,使用如图所示的系统测量DCR-CC滤波器的滤波性能。

2.C+L波段激光增益范围的实现;

提出的C+L波段单纵模窄线宽波长扫描光纤激光器结构如图所示。两部分通过两个CL波段波分复用器并联在一起。一个自制的DCR-CC复合谐振腔滤波器作为大范围滤波元件,用以于从密集的主腔纵模中筛选SLM,一个FFP-TF作为波长扫描元件,由一个函数发生器和高压放大器ATA-2021H进行驱动。虚线框内的FFP-TF等器件可由Cir-2和替换FBG代替,用来测量激光器静态激光输出性能。

实验结果:

1.如图分别显示了四个波长处在60分钟内的中期激光运行稳定性,通过使用分辨率为0.02 nm,数据采集间隔为0.001 nm 的OSA重复扫描进行测量。从图中可以看出,四个激光的波长波动性f (i=1,2,3,4)很小,最大为 0.006 nm,功率波动性f, (i=1,2,3,4)很低,最大值为0.704 dB,其信噪比OSNR均高于66 dB。

2.自零差法测量不同扫描频率下ESA测得的拍频谱。

实验结论:

对于FDML波长扫描激光器,通过提高增益、使用带宽更窄的高速可调滤波器,来进一步提升激光器性能。设计更加适合FDML机理的复合谐振腔滤波器有望进一步改善激光器的纵模特性。

安泰高压放大器ATA-2021H主要指标:

以上内容由西安安泰整理发布,安泰高压放大器最大输出200Vp-p (±100Vp)高压,可以驱动高压型负载,完美匹配各大匹配函数信号源及任意波形信号发生器,广泛应用于压电陶瓷驱动、超声波测试、声呐系统应用和MEMS测试等,可提供免费样机试用服务,如果想了解高压放大器更多应用,欢迎访问安泰测试网。


2021-09-07 11:45:58 285 0
DSC-Raman联用技术在研究高分子结晶度中的应用

       差示扫描量热仪(DSC)和拉曼光谱仪均被广泛应用于结晶度的研究,但监测的原理截然不同。DSC不仅可以精确确定样品结晶度,而且还可以通过测定相关焓变信息得到结晶动力学参数。凭借自身极其优异地控温能力——加热和冷却速度可以高达750°C/min可控,PerkinElmer®DSC80008500型DSC经常用于结晶度研究。ZL的双炉体设计,赋予炉温瞬间稳定以及精确控制在某一真实温度的能力,等温研究Z好是在这个模式下进行。结晶物的拉曼光谱和非结晶物一般不同,前者的峰宽较窄。拉曼光谱仪还可用于监控非常慢速的变化过程,从而提供额外的样品信息,并且也可以准确判定混晶发生的位置。PerkinElmer公司研发的RamanStation™400RamanFlex™lines允许实时调节激光脉冲周期,因此可以轻松调节拉曼光谱采集信号速率和DSC扫描速率的Z佳匹配值。同时测量消除了材料可能受试样热历史影响而带来的不确定性。


       下文针对半结晶性聚氧化乙烯的DSC-Raman检测可以充分说明两种技术的互补性。上述材料已被广泛运用于YL、生活以及工作的方方面面,例如牙膏。试样从10°C加热到75°C,经历了熔融过程,然后冷却到10°C,再进行重复扫描。diyi周循环中样品的熔融峰温位于70°C,而在第二次升温扫描中则出现在66.7°C。第二周升温测得的熔融热值也降低了(图1)。这暗示了diyi次的熔融和结晶过程使得材料的无定型区增加。

图1.聚氧化乙烯(PEO)的DSC扫描。diyi次和第二次循环被标注清楚


        在DSC运行时拉曼光谱每间隔5秒接受一次。diyi次加热/冷却循环之后,光谱中显示大量的无定型组分特征(图2)。通过差减可以diyi次循环扫描前后的光谱差异。虽然存在噪音,但它与完全熔融时的光谱图非常相似。因此拉曼光谱可以直接确认来自于DSC数据的推论,那就是diyi次加热/冷却循环提高了试样的无定型含量。从这些数据(图3)可以得到结晶组分的光谱和非晶组分的光谱。

图2.PEO的DSC扫描和光谱

图3.PEO结晶和非晶的拉曼光谱

       常用这两种技术来研究聚对苯二甲酸乙二醇酯(PET)。试样从熔融温度快速冷却至室温后检测到存在明显的无定型结构。热流曲线显示一个玻璃化转变温度(Tg)大约在70°C,然后出现冷结晶,在270°C发生晶区熔融(图4)。拉曼光谱的变化很小,但可以紧跟着进行主成分分析(PCA)。分析1727cm-1C=O拉曼骨架,得到两个主要的组分:PC1是diyi次求导曲线,对应于骨架的移动,PC2是二次求导曲线,表示峰宽的变化。很明显,对于峰宽变化的温度曲线与试样的结晶和熔融的相对应。然而,峰移动的温度曲线并不与DSC热流曲线的事件相对应,但反映了随着温度的提高向低频连续的移动。

       等温结晶可以真正地被DSC或带有可以理想的快速处理的DSC的拉曼光谱仪监测,而拉曼甚至可以被应用于慢速结晶研究。在研究两种吹塑成型的聚乙烯薄膜中可以看到两种技术数据的相关性,其中的一个材料不好。以500°C/min的速度快速从熔融状态冷却,测量发现试样在121°C结晶。这个实验需要使用HyperDSC®-capable设备,像DSC8500设备一样可以快速冷却并且仍然可以精确地、稳定地回到等温温度。一个稳定的瞬态之后,DSC数据(图5)显示问题材料比合格材料结晶更快,熔融焓值更高。拉曼数据(图5)显示Z初试样加热和冷却以及等温过程。这种情况下来自PCA的分数可以直接与结晶度相关。这里发现问题材料比合格材料结晶更快,另外Z终结晶度也比合格材料高。两组数据显示Z终的结晶度,问题材料高于合格材料50%。两种情况下材料Z终的结晶度远低于开始时的结晶度。

      图4PET的DSC和拉曼数据

图5a.HDPE等温结晶的DSC曲线图

图5b.HDPE熔融和等温结晶的拉曼光谱

DSC-Raman光谱仪赋予我们精确研究高聚物的能力,可以GX再现样品在各种控温条件下的结晶行为,同时与DSC能量变化相关的结构信息也能通过拉曼光谱体现。这种途径使得两种方法的相关性精确,有助于对结晶行为更深层次的理解。




2019-06-21 14:08:36 478 0
质谱技术在现代生物化学研究中主要有哪些应用。
 
2018-12-17 22:21:21 514 0
高压功率放大器ATA-4052在压电驱动器的研究中的应用

旨在分析压电驱动器的电激励振动特性。以双晶压电悬臂梁为对象,基于能量法和热力学平衡方程推导了压电悬臂梁在电压激励下的强迫振动微分方程。利用自行搭建的电激励振动试验系统,测试了不同幅值交流电压激励下压电梁的谐响应和瞬态响应。通过试验验证了理论分析的合理性,讨论了激励电压和阻尼对谐响应和瞬态响应的影响。结果表明:压电悬臂梁的谐响应呈非线性,具有弹簧渐软特性;压电梁的共振频率随激励电压幅值的增大而减小,在6V、9V、12V交流电压激励下,压电梁的共振频率分别为55.6Hz、54.8Hz、54.4Hz;当激励电压频率等于压电梁的固有频率时,其横向振幅达到峰值;当激励电压频率逐渐远离压电梁的固有频率时,其振幅则迅速降低;激励电压频率接近共振频率时梁会发生“拍振”现象;阻尼对压电梁的共振抑振作用最为明显。

压电驱动器因其输出位移大、灵敏度高、抗电磁干扰和断裂韧性强等优势,广泛应用于高应变材料精密定位、多层器件设计、便携式电子器件的大规模制造工艺、微型机器人的超声波电机和智能结构等领域。由于压电驱动器的工作与其振动特性密切相关,所以深入了解电压激励下压电结构的振动特性具有重要意义。

测试设备:ATA-4052高压功率放大器、频率特性分析仪、多功能信号发生器、激光位移传感器、动态信号采集系统和计算机。

实验过程:

试验开始前,给予已安装固定好的试件初始瞬时激励,然后记录其自由振动瞬态响应曲线,多次测量取平均值,最后通过衰减系数法求出压电悬臂梁的阻尼比约为0.03。使用频率特性分析仪测得压电悬臂梁的第一阶固有频率为55.513Hz。使用多功能信号发生器输入电激励信号,经功率放大器和导线在压电悬臂梁的上下表面电极上施加电压。在压电悬臂梁的共振频率区间进行谐响应测试。在压电梁的共振、近共振和远离共振频率区间测试压电梁的瞬态响应。试验过程中,利用激光位移传感器测试压电悬臂梁自由端的振动位移,并采集信号传送到计算机进行显示。

实验结果:

基于能量法和热力学平衡方程推导了电压激励下压电双晶悬臂梁的强迫振动微分方程,测试了电压激励下双晶压电悬臂梁的振动响应,理论与试验结果相吻合。试验结果表明,压电梁的振动响应呈弹簧渐软特性,在6V、9V、12V交流电压激励下的共振频率分别为55.6Hz、54.8Hz、54.4Hz。考虑工程实际中的非线性现象,若要增大压电驱动器的驱动效率,增大激励电压幅值的同时还需适当减小激励电压频率使其处于共振状态。阻尼对共振响应的抑振作用最明显,9V共振频率电压激励下,t=5s时压电梁在ζ=0.03时的振幅比在ζ=0.01时的振幅下降了约62.0%。本文所得结论可为提高压电驱动器的驱动效率问题提供理论与实践指导。

安泰ATA-4052高压功率放大器:

以上内容由西安安泰测试分享,如在选型/使用过程中有任何问题咨询安泰测试,安泰测试国内测量仪器综合服务商。https://www.agitek.cn/cp/364.html

2023-06-06 15:15:04 105 0
X射线的原理及在电子材料研究中的应用
两千字的论文
2018-11-20 22:36:30 280 0

10月突出贡献榜

推荐主页

最新话题