仪器网(yiqi.com)欢迎您!

| 注册
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

核磁共振成像分析方法用于食品品质检测

苏州纽迈分析仪器 2019-05-29 13:23:04 370  浏览
  • 食品中的水分和油脂是影响食品品质和食品风味的重要因素。纽迈核磁可用于食品的研发、质量监管和质量控制。

    在食品的研发应用中,可通过对样品的弛豫信号进行反演拟合、分析食品体系中水分子的流动性、水合特性、持水性能来判断食品性状和品质。同时可通过磁共振成像来获得食品中水分的迁徙变化,以及油脂的分布情况信息。

    1、研究水分子的流动性:水作为相对低分子质量的溶剂加入到食品体系中能够引起自由体积的增加,水分子流动加快,使得食品的稳定性受到影响。在NMR测量结果上表现为弛豫时间变长。

    2、分析持水力:食品在贮藏过程中其持水力会伴随酪蛋白结构的改变而增加。物理化学环境的改变驱使水分子从易流动相转移到不易流动相,水分和其中的蛋白质成分紧密结合,自由水被束缚在某些结构中,结果就导致稳定性受到影响。在NMR测量结果上表现为弛豫时间变长。

    3、水合特性:果胶作为一种非均一结构的多糖,大约40%的水分子要受到与果胶分子相互作用的影响,这种相互作用的结果是使得T2下降。因为结合作用使得水分子限制了大分子的运动区域,而且水分子能够与表面组分交换质子。

    4、定量和定性分析:氢质子可以分析乳脂肪中油脂的构成,提供定量数据。

    5、研究乳脂肪物质的特性:NMR技术可以快速评价乳脂肪的物质特性,得到液态脂肪与固态脂肪的相对比例。

    6、研究玻璃态转化温度:配置上核磁共振变温系统,可用于检测样品在不同温度下的驰豫特性,通过驰豫时间的变化趋势来获得样品的玻璃态转化温度。

    在食品工业生产应用中,核磁共振可用于质量监控:

    1、检测方便面、薯片、宠物食品等的油脂含量

    2、检测饼干、奶粉中的脂肪含量

    3、检测巧克力中的脂肪含量

    4、肉类食品中的脂肪含量

    5、油脂厂收购油料作物,预榨饼、饼粕的含油率检测……


    (来源:苏州纽迈分析仪器股份有限公司)

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

核磁共振成像分析方法用于食品品质检测

食品中的水分和油脂是影响食品品质和食品风味的重要因素。纽迈核磁可用于食品的研发、质量监管和质量控制。

在食品的研发应用中,可通过对样品的弛豫信号进行反演拟合、分析食品体系中水分子的流动性、水合特性、持水性能来判断食品性状和品质。同时可通过磁共振成像来获得食品中水分的迁徙变化,以及油脂的分布情况信息。

1、研究水分子的流动性:水作为相对低分子质量的溶剂加入到食品体系中能够引起自由体积的增加,水分子流动加快,使得食品的稳定性受到影响。在NMR测量结果上表现为弛豫时间变长。

2、分析持水力:食品在贮藏过程中其持水力会伴随酪蛋白结构的改变而增加。物理化学环境的改变驱使水分子从易流动相转移到不易流动相,水分和其中的蛋白质成分紧密结合,自由水被束缚在某些结构中,结果就导致稳定性受到影响。在NMR测量结果上表现为弛豫时间变长。

3、水合特性:果胶作为一种非均一结构的多糖,大约40%的水分子要受到与果胶分子相互作用的影响,这种相互作用的结果是使得T2下降。因为结合作用使得水分子限制了大分子的运动区域,而且水分子能够与表面组分交换质子。

4、定量和定性分析:氢质子可以分析乳脂肪中油脂的构成,提供定量数据。

5、研究乳脂肪物质的特性:NMR技术可以快速评价乳脂肪的物质特性,得到液态脂肪与固态脂肪的相对比例。

6、研究玻璃态转化温度:配置上核磁共振变温系统,可用于检测样品在不同温度下的驰豫特性,通过驰豫时间的变化趋势来获得样品的玻璃态转化温度。

在食品工业生产应用中,核磁共振可用于质量监控:

1、检测方便面、薯片、宠物食品等的油脂含量

2、检测饼干、奶粉中的脂肪含量

3、检测巧克力中的脂肪含量

4、肉类食品中的脂肪含量

5、油脂厂收购油料作物,预榨饼、饼粕的含油率检测……


(来源:苏州纽迈分析仪器股份有限公司)

2019-05-29 13:23:04 370 0
核磁共振成像MRI_核磁共振成像原理介绍

核磁共振成像原理背景:

      核磁共振成像(MRI)也称磁共振成像,是利用核磁共振原理外加梯度磁场检测发射出的电磁波,据此可以绘制物体内部的结构图像,常见的可以发生核磁共振现象的原子有: 1H、11B、13C、17O、10F、31P。目前核磁共振成像原理在物理、化学、YL、石油化工、食品农业等领域获得了广泛的应用。核磁共振成像(MRI)原理应用用于人体内部结构就产生出一种革命性的医学诊断工具–核磁共振成像仪。将快速变化的梯度场应用于核磁共振成像仪中,提升了MRI的速度,使该技术在科学研究中的广泛应用成为现实。

核磁共振成像原理介绍1:

      核磁共振成像原理可简单归纳为:根据需要,将待测样品分成若干个薄层,这些薄层称为层面,这个过程成为选片。每个层面可分为由许多被称为体素的小体积组成(如下图1)。对每一个体素标定一个记号,这个过程称为编码或空间定位。对某一层面施加射频脉冲后,接收该层面的核磁共振信号进行解码,得到该层面各个体素核磁共振信号的大小,Z后根据其与层面各体素编码的对应关系,把体素信号的大小显示在荧光屏对应像素上,信号大小用不同的灰度等级表示,信号大的像素亮度大;信号小的像素亮度小。这样就可以得到一副反映层面各体素核磁共振信号大小的图像,即MRI图像。成像过程方框图见图2 。

      用于确定MR信号源空间位置的基本方法是使用附加的线性梯度,即成像梯度。处在外磁场B0中的氢质子不论其空间位置如何,产生的核磁共振的频率都相同,如果在外磁场B0上沿某一方向再叠加一个线性梯度磁场,将导致总磁场(外磁场B0和梯度磁场矢量和)在沿梯度磁场方向上呈现一端高一端低,两端之间的磁场强度呈梯度分布。在磁场梯度方向上使共振频率产生可预见的变化。

      磁场梯度常常是由核磁共振成像仪中产生外磁场B0的主磁体腔内的梯度线圈产生的。运用三个相垂直的磁场梯度,在不同的时间内,对核磁共振信号源进行空间三维定位。

下面将简单介绍核磁共振成像原理中的梯度场。

核磁共振成像原理介绍2:

      在自然状态下的质子,虽然每个质子都有微小的磁矩存在,但是由于空间方向上的随机存在而总磁矩为零对外不呈现磁性。将质子至于外磁场中,质子的磁矩方向会倾向于与外磁场的方向一致或相反,并产生一个与外磁场方向相同的纵向磁化强度矢量M0,即被磁化。磁化后的质子处于稳定状态,根据设定的扫描参数,核磁共振仪发出一个频率与质子进动频率相同的射频激励脉冲,进动质子收到激励后,吸收射频激励脉冲的能量,纵向磁化强度矢量M0偏离纵向,即发生了核磁共振现象。

      处在外磁场中的体内质子,在射频激励脉冲磁场作用下产生磁共振,但所有组织的质子以相同的频率共振,产生核磁共振信号来自于样品整体,具有相同的频率特征,没有任何空间信息,不能形成MRI的图像。而要形成MRI图像还需要第三种磁场,即梯度磁场,在MRI中起到空间定位的作用。

所谓的线性梯度磁场就是磁感应强度大小随位置以线性方式变化的磁场,简称梯度场。

图3给出了一个沿z轴方向的线性梯度场。这里沿z轴方向的线性梯度场含义是指:线性梯度磁场的磁场方向沿B0(或z轴)方向,磁场的大小随z的增加而线性增加。

      为了得到任意层面的空间信息,MRI系统中在x、y和z轴均使用了线性梯度场,分别为Gx、Gy和Gz。在核磁共振成像仪中,线性梯度场是由梯度线圈产生的,置于x、y和z轴方向的三个梯度线圈分别产生Gx、Gy和Gz。
       外磁场B0是均匀强磁场,其大小和方向是固定不变的。但梯度场的大小和方向均可以改变,因此梯度磁场和外磁场叠加后使得磁场发生梯度性的变化。如果外磁场B0沿水平方向,施加一个水平方向的线性梯度场,其叠加后情况见图4.

图4.梯度磁场与外磁场的叠加

核磁共振成像原理介绍3:

      在核磁共振成像仪中,将样品置于稳恒均匀外磁场B0中,外磁场方向沿z轴方向,在外磁场B0基础上,再叠加一个同方向的线性梯度场Gz,该梯度场磁场强度的大小沿z轴方向由小到大均匀改变。图5中箭头的长短表示梯度场的强度,箭头的方向表示梯度场的方向。从图中可知垂直于z轴方向同一很薄的平面(或层面)上的磁场强度相同,不同位置的层面上(图中1、2、3层面)由于梯度场的强度不同,所以不同位置层面的磁场强度不同。由拉摩尔进动公式可知:ω0=γB0

       如果射频脉冲的频率使2平面的氢质子发生磁共振,则1和3层面内的氢质子因不满足拉摩尔公式而不发生共振,若把射频脉冲的频率设计为满足其他层面的磁共振条件时,也可以使其他层面内的氢质子发生共振,而其余的层面内氢质子不会发生共振。

图5.梯度场的层面选择

核磁共振成像仪中的层厚

       THK是thickness的缩写,即层厚是指成像层面在成像空间第三维方向上的尺寸。对于核磁共振设备,层厚表示一定厚度的扫描层面。层面的选取在实际临床操作中都是有一定厚度的。既然层面具有一定的厚度,由于选片梯度场Gz的作用,每一层面内磁场强度的大小是不均匀的,是在一定范围内线性变化的。或者说每一位置的层面对应一定的磁场范围。那么是该层面发生磁共振的射频脉冲频率将不是单一的拉摩尔频率,而是具有一定的频率范围。

      层面厚度关系到MRI层选方向的分辨率,层面薄的则分辨率高;层面厚的则分辨率低。但层面不能太薄,由于我们还要将成像层面分成大量体素,层面太薄时每个体素内质子数量减少,各体素产生信号小,信噪比小,达不到高分辨率的目的。

      层厚是核磁共振成像图像质量的重要决定因素,层厚的增加使成像组织的提诉体积增加,体素内质子数量增加,信号强度增加,图像的表观改善。


(来源:苏州纽迈分析仪器股份有限公司)


2019-06-27 11:33:07 1232 0
可用于检测抗坏血酸的化学方法有哪些
 
2017-04-30 05:09:42 908 2
脉冲核磁共振成像

脉冲核磁共振成像

脉冲核磁共振成像实验仪利用物理学方法将抽象的理论运用多媒体进行展示,使人们能够直观地了解到其成像效果,进而可以使我们迅速了解磁共振的成像原理。

脉冲核磁共振成像原理

脉冲核磁共振成像实验仪由多个部分组成,主要包括了磁铁、探头、开关放大器以及相位检波器等。探头内部主要包括了梯度线圈与射频线圈,其中,探头内部的梯度线圈能够实现空间相位编码和频率编码,而探头内部的射频线圈主要是将样品放入到射频线圈中,这样一方面能够达到旋转磁场的目的,另一方面还能够观察自由旋进信号的发射线圈和接收线圈。在观察自由旋进信号的时候,可以采用开关放大器将探头内的射频线圈与相位检波器进行连接,接下来,可以利用振荡器与射频脉冲发生器,从而获得相应的相位检波器与射频脉冲的射频基准。但是如果在采集上存在困难,那么可以利用相位检波器获得比较容易采集的低频信号。蕞终可以得到脉冲核磁共振成像所需要的相位精度。

脉冲核磁共振成像实验仪的磁体主要是采用微米精度加工技术而实现的,因此,通常情况下它的磁场均匀度相对比较高。同时,脉冲核磁共振成像实验仪利用恒温控制器对磁铁进行控制,因此,其稳定性比较高。此外,在DDS技术的支持下,射频电路的工作频率不仅具有较高的稳定度,同时还能够进行较大范围且高分辨率调节。

脉冲核磁共振的整个过程中,如果进行加载脉冲的操作,那么实际上就是脉冲的受激吸收过程。与此同时,可以发现,脉冲自由衰减的时候属于自发式辐射,同时还会出现受激辐射的现象。

脉冲核磁共振成像技术已经广泛地应用于生物、医学以及物理学中,脉冲核磁共振实验仪不仅使人们了解到共振现象及各种脉冲序列的相关原理,同时也使人们充分认识到磁共振成像、成像原理及图像重建的数学处理方法。从而使人们对磁共振成像技术有一个更深入的认识。


其他资料:

2022-07-25 10:58:26 202 0
水分活度对食品品质及安全性的影响
2000左右的... 2000左右的 展开
2013-04-19 01:10:00 863 2
胶囊水分含量检测卡尔费休分析方法

2012年的毒胶囊事件后,人们对药物的质量安全意识越来越浓,对其质量检测的要求也越来越高,在胶囊的生产过程中,水分含量是一个重要的控制指标,胶囊水分含量的高低会直接影响其质量和使用期限,甚至会直接影响包含其中的药品的质量和使用期限。

 



上海禾工AKF-2010HT卡尔费休医药专用水分测定仪与市场同类产品相比,禾工AKF-2010HT高精度水分测定仪在胶囊样品不能完全溶解的情况下,采用加热搅拌台辅助样品加热溶解,精确的检测出其样品的含水量,测试过程更加的安全、环保、方便。

 

方法步骤:

1.使用仪器的“吸溶剂”功能向滴定池内注入约40ml的无水甲醇溶剂。

2.使用仪器的“打空白”功能滴定至终点,以去除滴定池内的水分,仪器就绪并保持终点的状态。

3.用经过干燥处理的微量进样针精确抽取10ul纯水,拭干针头后放入天平称量,将前后两次称量之差作为纯水的重量输入到仪器,开始标定。

4.重复步骤3,反复测量3-5次,仪器会自动保存标定结果并计算出平均值作为试剂的滴定度。

5.用加样针抽取一定量的样品加入滴定池,将进样前后加样针的重量之差作为样品进样量输入仪器,并开始测量。


 



技术指标:

水份含量测定范围:   0.001%-

滴定控制精度:     0.2ul

可用计量管:       5ml,10ml,20ml

测量重复性:       ≦0.15%(2ml试剂)

方法存储:        12组

测定结果数据存储:   >200组(可使用移动存储器成批导出) 

滴定组件:        ZL活塞头,可选配20ml(标配)、10ml、5ml长寿命高精度滴定管,附抗紫外线护罩

辅助功能:        滴定延时,终点延时

样品测定时间:     平均2分钟

显示器:          彩色触摸屏

阀门及管路材质:    聚四氟乙烯PTFE三向双通电磁驱动控制阀,防腐蚀抗紫外线设计,全防腐管路,便捷快插接头,螺母;

检测电极:         双铂针电极

滴定台:          磁力搅拌台(50-1200转/分,标配)、 带加热磁力搅拌台(选配)、微量滴定池(选配)

数据接口:         web接口,USB接口,数据可拷贝输出

可选配:          加热搅拌滴定台、卡氏加热顶空进样器、微型数据打印机

使用环境温度:     +5-40℃

使用环境湿度:     ≤80%



关键词:胶囊、卡尔费休水分测定仪、水分测定仪、高精度水分测定仪、加热搅拌台、AKF-2010HT


2019-09-12 14:09:26 326 0
使用气相色谱仪分析检测的方法是什么?
 
2013-11-27 10:49:38 504 2
土壤肥料检测与分析应用什么方法
 
2017-06-29 11:49:46 328 1
明美偏光显微镜用于药厂药物微粒检测与分析

药物的粒子大小、粒度分布和微观形貌决定药物的效果,粒子大小和粒度分布也是评估制药工艺的重要依据。常用的检测方法有偏光显微镜来观察药物。

 

 

明美偏光显微镜MP41采用无限远光学系统及模块化功能设计, 配置无穷远无应力长工作距离平场物镜。偏光观察装置可移入或移出光路,起偏器与检偏器均可360°旋转,可为广大用户进行单偏光观察,正交偏光观察,锥光观察,放大倍数50X-1000X,可满足不同需求。

 

偏光显微镜MP41搭配2000万像素显微镜相机MDX10和颗粒分析软件,成像清晰,准确性更高。

 

 

偏光显微镜MP41应用于地质、化工、医疗、药品等领域的研究与检验,也可进行液态高分子材料,生物聚合 物及液晶材料的晶相观察,是科研机构与高等院校进行研究与教学的理想仪器。

来源:https://www.mshot.com/article/1532.html

2022-09-13 16:38:34 223 0
NMI20核磁共振成像分析技术在食品干燥中的应用

干燥就是通过对食品中水分的脱除,进而降低食品的水分活度从而限制微生物活动、酶的活力以及化学反应的进行,达到达到长期保藏的目的。

食品干燥的目的:

  1.延长贮藏期–经干燥的食品其水分活性较低,有利于在室温条件下长期保存;

  2.用于某些食品加工过程,以改善加工品质–如大豆、花生米经过适当干燥脱水,有利于脱壳,便于后加工,提高制品品质;

  3.便于商品流通–干制食品重量减轻、容积缩小,可显著节省包装、储藏和运输费用,便于携带和储运。

核磁共振技术在食品干燥中的应用:

  核磁共振及其成像技术是一种有效的研究水分活度的方法,可用于食品体系中的水的研究,这些分子在各类食品中又往往携带了重要的信息:结构信息,分子所处环境信息以及在加工、贮藏中内部变化的信息等。核磁共振技术的无损检测特点使其应用于食品科学的研究具有明显的优势。因此,核磁共振技术已被成功地应用在食品的干燥储藏中。  

蘑菇不同干燥时间成像图

蘑菇不同干燥方式T2分布图

(来源:苏州纽迈分析仪器股份有限公司)

2019-05-29 13:23:04 402 0
常用的元素检测分析方法有哪些
 
2017-03-26 08:11:16 331 2
如何开发适当的手性分析方法检测
 
2016-01-24 23:20:47 318 1
核磁共振成像全身检查多少钱
性别:女年龄:24病情描述:核磁共振成像全身检查多少钱发病时间:不清楚
2014-04-25 23:11:30 654 1
核磁共振成像发展历史
 
2012-06-18 01:28:18 581 1
怎么看核磁共振成像图
 
2017-05-21 08:04:25 443 1
水质检测分析方法常用哪些分析方法?
 
2011-09-25 22:01:20 277 3
鲎试验用于检测什么
 
2013-12-30 09:07:50 231 4
Time Tagger用于频率稳定性分析

-不仅限于测量Allan Deviation (艾伦方差)

      频率稳定性分析通常被用来表征周期性信号如来自振荡器的。有多种因素会影响振荡器的稳定性,如由环境温度变化、设备老化导致的电子抖动或频率漂移。振荡器的稳定性可以通过与更精密的参考时钟比较来表征。Time Tagger带来了基于软件的外部时钟,可以允许使用任意参考时钟。理想情况下,将原子钟做为参考,可以延长Time Tagger的长期稳定性。

       IEEE1139标准中描述了频率稳定性分析的指标。Time Tagger的频率稳定性测量类提供了一系列指标,包括艾伦方差 (ADEV)、时间方差 (TDEV) 和哈达玛方差 (HDEV)。FrequencyStability 可并行、即时地计算所有可用指标,并且可以跟踪当前的频率和相位误差。

       有两个主要因素会影响您的测量质量。对于正在研究的短时间间隔,Time Tagger的离散化噪声是主要因素。对于具有优于10 ps时间精度的Time Tagger Ultra,您可以计算的最小ADEV对应于该时间精度的倒数:对于1 s的时间间隔,可以实现 10-11 的ADEV,在1 ms内,您可能会达到10-8。对于较长的时间间隔,参考振荡器的质量是关键因素。在没有外部参考的情况下,您可以依靠Time Tagger Ultra的内部时钟,其稳定性为8 ppb。使用原子钟和我们新颖的软件时钟,您可以将这种稳定性提高几个数量级。

请注意,根据您的需求,我们的入门型号Time Tagger 20可能无法在中间时间刻度上提供足够的稳定性,以允许使用高精度外部软件时钟。请考虑使用Time Tagger Ultra进行频率稳定性分析测量。

 

Swabian Instruments的Time Tagger用于频率稳定性分析的优势

l 同时测量ADEV、TDEV、HDEV在内的多种稳定性指标

使用FrequencyStability测量类,您可以测量艾伦方差 (ADEV)、时间方差 (TDEV)、哈达玛方差 (HDEV) 和其他指标。Time Tagger的频率稳定性测量类计算的结果符合IEEE 1139标准。

 

l 可将任意参考时钟与我们的软件时钟一起使用

振荡器的特性需要与稳定性更高的参考时钟进行比较。除了Time Tagger Ultra的内部参考之外,您还可以应用自己选择的参考振荡器——例如原子钟——延长稳定性。外部参考时钟可通过软件执行,并接受1 kHz至475 MHz范围内的任意输入频率。

 

l 可并行表征超过140个振荡器

Swabian Instruments的Time Tagger的可扩展性允许对超过140个被测设备进行并行的表征。由于每个振荡器都由其自己的软件实例进行分析,您可以灵活地运行一些测试数小时,而其他通道则需要数周才能采集数据。大量输入使Time Tagger Ultra成为振荡器生产测试的best解决方案。


2022-02-09 11:38:01 315 0
核磁共振成像的未来展望
 
2018-12-05 05:12:38 451 0
液相色谱用于检测什么物质
 
2012-04-25 17:42:43 533 2

10月突出贡献榜

推荐主页

最新话题