仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

C06 - 悬浮液阳离子的电荷滴定

大昌华嘉科学仪器部 2021-07-26 19:35:56 506  浏览
  • 在许多情况下,胶体的稳定性取决于粒子之间的静电斥力。粒子界面上的离子基团起主要作用。也许是斥力为零,范德华引力导致的凝聚和随后的粒子与液相的分离?通过粒子界面的化学修饰,可以控制其斥力。环境条件如pH值,电导率,聚合物的存在等必须加以考虑。在这些体系中,可以通过排斥势的大小和粒径分布来预测不稳定性。为了优化稳定性和分散性,需要做大量的配方研究。Stabino II对于稳定性研究者来说是一个非常有效的助手。在水资源的循环利用中,这种分散体的失稳是由絮凝和破乳引起的。它是通过使离子电荷接近于零来实现的。利用Stabino II可以很容易地控制絮凝剂的投加量。

     

    本篇测试报告的ZD是金属氧化物的电荷控制。


    测量原理

    Stabino II可以和粒径分布测试模块联用。这项技术是基于180°DLS动态光背散射法,适用范围0.3到6.5um,样品浓度可高达40%。有关粒径方法的详细信息,请参阅手册。Stabino II的测量原理在其它文章中有详述,此处仅引用几条主要原则:

    粒子界面电位(PIP)的感应信号是一种电压,它是由测量筒和振荡活塞之间的薄层间隙中粒子周围的离子云的剪切力形成的。

    ● 化学物质或盐对颗粒界面的影响是由pH、聚电解质或盐溶液的滴定来定量确定的。

    ● 样品浓度为0.1 ~ 10% v/v。低于0.1%时灵敏度可能太低,高于10%甚至更低的高粘度是极限。

    ● 该方法适用于整体粒径范围0.3 nm到 300μm。


    关注电荷滴定

    样品和滴定液的混合及PIP的测量是在同一个测量筒中进行的。新样品配制后可能会发生化学变化,这可能比滴定慢得多,而滴定通常只需几分钟。由于电荷滴定的GX率,每天可以进行许多实验筛选工作。以下研究经常使用Stabino II进行:

    ● pH-滴定,寻找等电点pH(0mv)和稳定区域(s)。

    ● 聚电解质-滴定到电荷零点,得到已知电荷浓度的聚电解质溶液的消耗量“V (0mV) [mL]”,这个消耗量给出了以下问题的答案:

       o 未知聚电解质的总电荷是多少?

       o 分散体系中,每克样品中覆盖在粒子表面的功能离子端基有多少?

    ● 聚电解质反应物的化学计量

    ● 两个自动滴定序列:两个滴定系统为此服务,易于滴定操作。滴定程序对测量信号的变化作出动态响应。加入ZH一部分滴定液后,PIP或pH值若变化过大,下一步就加入较少的滴定液,反之亦然。这节省了时间且不牺牲精度。

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

C06 - 悬浮液阳离子的电荷滴定

在许多情况下,胶体的稳定性取决于粒子之间的静电斥力。粒子界面上的离子基团起主要作用。也许是斥力为零,范德华引力导致的凝聚和随后的粒子与液相的分离?通过粒子界面的化学修饰,可以控制其斥力。环境条件如pH值,电导率,聚合物的存在等必须加以考虑。在这些体系中,可以通过排斥势的大小和粒径分布来预测不稳定性。为了优化稳定性和分散性,需要做大量的配方研究。Stabino II对于稳定性研究者来说是一个非常有效的助手。在水资源的循环利用中,这种分散体的失稳是由絮凝和破乳引起的。它是通过使离子电荷接近于零来实现的。利用Stabino II可以很容易地控制絮凝剂的投加量。

 

本篇测试报告的ZD是金属氧化物的电荷控制。


测量原理

Stabino II可以和粒径分布测试模块联用。这项技术是基于180°DLS动态光背散射法,适用范围0.3到6.5um,样品浓度可高达40%。有关粒径方法的详细信息,请参阅手册。Stabino II的测量原理在其它文章中有详述,此处仅引用几条主要原则:

粒子界面电位(PIP)的感应信号是一种电压,它是由测量筒和振荡活塞之间的薄层间隙中粒子周围的离子云的剪切力形成的。

● 化学物质或盐对颗粒界面的影响是由pH、聚电解质或盐溶液的滴定来定量确定的。

● 样品浓度为0.1 ~ 10% v/v。低于0.1%时灵敏度可能太低,高于10%甚至更低的高粘度是极限。

● 该方法适用于整体粒径范围0.3 nm到 300μm。


关注电荷滴定

样品和滴定液的混合及PIP的测量是在同一个测量筒中进行的。新样品配制后可能会发生化学变化,这可能比滴定慢得多,而滴定通常只需几分钟。由于电荷滴定的GX率,每天可以进行许多实验筛选工作。以下研究经常使用Stabino II进行:

● pH-滴定,寻找等电点pH(0mv)和稳定区域(s)。

● 聚电解质-滴定到电荷零点,得到已知电荷浓度的聚电解质溶液的消耗量“V (0mV) [mL]”,这个消耗量给出了以下问题的答案:

   o 未知聚电解质的总电荷是多少?

   o 分散体系中,每克样品中覆盖在粒子表面的功能离子端基有多少?

● 聚电解质反应物的化学计量

● 两个自动滴定序列:两个滴定系统为此服务,易于滴定操作。滴定程序对测量信号的变化作出动态响应。加入ZH一部分滴定液后,PIP或pH值若变化过大,下一步就加入较少的滴定液,反之亦然。这节省了时间且不牺牲精度。

2021-07-26 19:35:56 506 0
通过离子电荷滴定控制碳纳米管的功能化效率

 

1:碳纳米管

 

介绍

许多微粒系统取决于颗粒悬浮体系的稳定性和再分散能力,而它的PH范围不能太过局限。一种达到稳定性的方法为通过适当的离子端基修饰改变它的界面。越高的离子电荷密度,单个颗粒间的排斥力就越高,从而可以克服范德华吸引力。离子排斥可以通过静电学的颗粒界面电势(PIP)和总的离子表面电势表征。PH稳定范围和总离子电势,都可以通过StabinoR电位滴定轻松控制。

 

2

 

Stabino II ®实验

 

滴定在一个10ml的水性分散体系进行。进行滴定的浓度范围从0.001%10%v/v,而对于单个电位测试浓度可以高至50%v/v。振荡活塞产生流动电势SP,同时将滴定液混合到样品中,并避免悬浮体系的沉降。滴定的速度通过Z短时间内充分的混合而得到了优化。

 

结果

首先,在0.15%w/vCNT分散液中进行PH-电位滴定来测量等电点(IEP,如图3)。通过Microtrac 激光粒度仪S3500测试得到CNT分散液中颗粒的粒度D5020μm,。未经处理的CNT(紫色线)的等电点的PH值为4.3,而经过表面改性的CNT(蓝色和黄色)的等电点的PH则小于2。根据结果图3,经过处理后PH稳定范围可以扩宽到2以上。

 

 Stabino II ®中,离子电荷密度还可以通过聚电解质滴定至达到零电位点来确定。因为CNT表面自然带负电,因此滴定通过添加阳离子聚合物来操作。1N的阳离子聚电解质(PD)带有1eq的电子电荷。假设电荷补偿是1:1,那么聚电解质(PD)的消耗量就可以测量每克样品总的电荷。

 

 以上的图形中已经做了解释。如结果图4显示,很明显改性非常成功,表面很大程度地功能化了。

 

结论

通常来说,滴定显示了样品对其环境的变化是怎样反应的。这比仅仅在样品所给状态下测试zeta 电位能提供更丰富的信息。另外,总的电荷反应了电荷密度。

 

Stabino II ®设计可用于GX的颗粒电荷和PH-电位滴定,而无需样品参数。测试速度极快,一小时内可完成至少五次滴定测试。此方法被应用于许多胶体和颗粒体系,范围从0.3nm300μm,样品类型包括 ZnOCNTsSiO2Al2O3,蛋白等等。

 

 

 

通过使用stabino II,可实现快速便捷的颗粒的电位滴定测试。在分散体系中,同性带电离子的静电排斥作用是分散体避免凝聚保持稳定的主要原因,故带电粒子界面的表征是必不可少的。当颗粒离子化后,总电荷和电荷密度是需要知道的重要参数。电荷测量是通过建立动电信号来完成的。

 


更多内容,关注“大昌华嘉科学仪器部”微信公众号


2020-05-14 17:55:55 623 0
阳离子聚合的阳离子聚合引发剂
 
2018-11-20 22:03:51 318 0
纳米颗粒的悬浮液怎么制备原子力显微镜样品
 
2011-06-20 17:39:24 464 1
强阳离子色谱柱和弱阳离子色谱柱的区别
 
2017-09-13 19:47:09 326 1
石墨烯悬浮液能用喷雾干燥机干燥吗
 
2017-04-22 13:03:11 366 1
多种多样的阳离子磷脂

新冠疫情爆发后,mRNA相关技术获得了快速突破,多款mRNA新冠疫苗上市并展现出了相较于其他传统疫苗更高的保护率,使其逐渐成为研究宠儿。在mRNA疫苗中,一个核心要素就是构建一个mRNA的递送载体,而目前多通过脂质纳米粒(Lipidnanoparticle,LNP)来达到这一目的。

而LNP之所以可以作为递送mRNA的首要载体,首要原因就是得益于构建LNP时所使用的阳离子磷脂或可电离磷脂。因为在组装过程下,阳离子磷脂或可电离磷脂中带正电的头部基团可以与带负电的RNA磷酸骨干相互作用,通过静电吸附达到包载的目的。那么各种不同的阳离子磷脂其结构上又有什么相似和不同之处呢,今天小编就带大家了解一下。

早在1987年,研究者们就合成出了一种用于体外基因递送的阳离子磷脂DOTMA,用其制成的脂质体递送质粒DNA,包封率可达将近100%。后续大家熟悉的Lipofection体外转染试剂就是在此基础上构建的。图1中即为DOTMA的组成结构,可以看到其主要是由一个阳离子或可电离的头部基团、连接基团及疏水尾部组成。而且我们也可以根据3个组成基团的不同来区分不同的阳离子磷脂衍生物。




图1. 阳离子磷脂DOTMA的化学结构和相关磷脂衍生物的结构组成




首先,不同的疏水尾部结构可以影响磷脂的pKa值、亲脂性、相转变温度等,胆固醇衍生物或碳氢化合物链,甚至生育酚衍生物都可以作为脂类的疏水部分。烃尾一般在8~18个碳单元之间,可具有不同的不饱和度,同时没有对称性的要求。而且在某些配方中加入不饱和脂肪酸作为脂尾可以提高输送效率,这可能是由于它们的转变温度较低以及它们对提高膜流动性的影响。而常用的连接基团包括醚和酯、磷酸盐或膦酸酯连接基团、甘油型基团或多肽。氨基甲酸酯和酰胺也经常被用作连接基团,因为它们都是化学稳定和可生物降解的。酯和醚是化学稳定的可选连接基团。连接基团是可调节的,因为它们足够稳定,具有较高的循环稳定性,但可以在目标位点迅速降解,以促进RNA有效载荷的释放。而最主要的头部基团则可以是季铵盐、胍基、咪唑鎓盐、吡啶盐等结构组成的阳离子磷脂,或是由伯胺和仲胺磷脂、叔胺基磷脂等组成的可电离磷脂,亦或是可由阳离子和阴离子基团共价连接组成的两性离子脂质。

随着研究的不断发展,越来越多的阳离子磷脂或可电离磷脂不断涌现,不断改善其在RNA递送上的各种问题,未来随着mRNA疫苗等相关技术的进一步普及,相信也会有更多的磷脂种类供研究者们选择。


参考文献:

1. Felgner, P. L., et al. Lipofection: a Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 7413−7417.

2. Yuebao Zhang., et al. Lipids and Lipid Derivatives for RNA Delivery. Chem. Rev. https://doi.org/10.1021/acs.chemrev.1c00244

3. Mahato, R. I. Water Insoluble and Soluble Lipids for Gene Delivery. Adv. Drug Delivery Rev. 2005, 57, 699−712.




纳米药物制备系统




应用范围:



了解更多信息请联系021-37827858或13818273779


点击以下链接,查看往期回顾


mRNA-LNP的结构到底是怎样的?

核酸脂质纳米粒(LNP)科普 —— 组成成分及作用

核酸脂质纳米粒科普——氮磷比计算

通过微流控技术GX、可放大的制备核酸脂质纳米粒

大小、结构不同的mRNA-LNP,细胞内的蛋白表达会不同吗?—— 粒径大小篇

mRNA体内递送载体有哪些?

NanoAssemblr制备的LNP实现对CRISPR-Cas9的GX递送


2021-08-19 16:23:47 326 0
阳离子表面活性剂的分类
 
2018-12-10 22:10:56 208 0
影响悬浮液zeta电位的因素有哪些
 
2016-07-12 10:57:02 530 1
强阳离子色谱柱scw和弱阳离子色谱柱wcx的区别
 
2017-09-17 10:13:52 446 1
流式细胞仪怎么把细胞悬浮液变为单细胞
 
2015-11-23 09:22:53 517 1
阳离子单体DAC
谁知道!
2018-11-16 14:28:01 239 0
阳离子纱线强度
阳离子纱线 是不是比普通涤纶的强度要低,大概低百分之多少,两者还有其他性能上的差别?
2017-12-05 15:18:54 493 1
胶体的电荷性怎么看
如硫酸铵,硝酸铵等怎么知道它是带什么电荷的
2006-08-24 02:33:43 241 4
电解池阳离子移向哪极?原电池阳离子移向哪极?
 
2013-05-23 21:18:14 2836 4
CCD电荷注入方式
CCD电荷注入方式中有一种是光注入方式,光注入方式分正面照射式和背面照射式,请问到底是什么意思?这个正面和背面到底是指什么?有什么区别?
2012-04-10 16:39:33 434 2
水涂粉时,怎么配制百分之十二的氧化铝悬浮液?
 
2018-12-04 13:50:12 293 0
怎样将埃洛石纳米管制成稳定的悬浮液
 
2016-10-25 11:46:31 282 1
土壤化学的土壤电荷性质
 
2018-11-23 06:39:09 235 0
场源电荷处的场强是多少
 
2013-08-20 04:22:25 542 1

10月突出贡献榜

推荐主页

最新话题