仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

什么试剂可以增加蛋白和细胞结合力

siyuan2010wish 2017-05-18 09:14:56 383  浏览
  •  

参与评论

全部评论(2条)

  • yewenba主 2017-05-19 00:00:00
    QL胶

    赞(19)

    回复(0)

    评论

  • 独倚夜空 2017-05-19 00:00:00
    蛋白提取试剂盒分离亚细胞器后,怎么验证蛋白纯度 1. 前处理 把蛋白质从原来的组织或溶解状态释放出来,保持原来的天然状态,并不丢 失生物活性。常用的方法:匀浆器破碎、超生波破碎、纤维素酶处理以及溶菌酶等。 超声波破碎法:当声波达到一定频率时,使液体产生空穴效应使细胞破碎的技术。超声波引起的快速振动使液体局部产生低气压,这个低气压使液体转化为气体 ,即形成很多小气泡。由于局部压力的转换,压力重新升高,气泡崩溃。崩溃的气泡产生一个振动波并传送到液体中,形成剪切力使细胞破碎。 2. 粗分级 分离可用盐析、等电点沉淀和有机溶剂分级分离等方法。这些方法的特点是简便、处理量大, 3. 细分级 样品的进一步纯化。样品经粗分离以后,一般体积较小,杂蛋白大部分已被除去。进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。必要时还可选择电泳、等电聚焦等作为Z后的纯化步骤。 结晶是Z后的一步 分离纯化的方法:1.分子大小;2.溶解度;3.电荷;4.吸附性质;5.对配体分子的生物亲和力等。 (一)根据分子大小不同的纯化方法 1. 透析 利用蛋白质分子不能通过半透膜,使蛋白质和其它小分子物质如无机盐、单糖等分开。 2. 密度梯度离心。 蛋白质颗粒的沉降系数不仅决定于它的大小,而且也取决于它的密度。 3. 凝胶过滤 利用蛋白质分子大小,因为凝胶过滤所用的介质是凝胶珠,其内部是多孔的网状结构。当不同的分子大小的蛋白质分子流过凝胶层析柱时,比凝胶珠孔径大的分子进入珠内的网状结构,而被排阻在凝胶珠之外随溶剂在凝胶珠之间的空隙向下移动并Z先流出柱外,比网孔小的分子能不同程度底自由出入凝胶珠的内外,由于不同大小的分子所经路径不同而得到分离。大分子先被洗脱下来。小分子后被洗脱 (二)利用溶解度差别的纯化方法 1.等电点沉淀和PH的控制 蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而聚集沉淀。因此在其他条件相同时,它的溶解度达到Z底点,利用等电点分离蛋白质是一种常用的方法。 2. 蛋白质的盐溶和盐析 中性盐可以增加蛋白质的溶解度,这种现象称为盐溶。盐溶作用是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质分子与水相互作用加强了,因而溶解度增加 当溶液的离子强度增加到一定数值时,蛋白质的溶解度开始下降。当离子强度足够高时,很多蛋白质可以从水溶液中沉淀出来,这种现象称为盐析。 盐析作用的主要原因是大量中性盐的加入使水的活性降低,原来溶液的大部分甚至全部的自由基水转变成盐离子的水化水

    赞(13)

    回复(0)

    评论

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

什么试剂可以增加蛋白和细胞结合力
 
2017-05-18 09:14:56 383 2
有要了解低温等离子表面处理设备的吗?增加结合力和稳定性!!!
 
2011-06-15 05:04:06 460 1
荧光显微镜用什么试剂给细胞染色
 
2018-11-28 20:37:14 365 0
strep tactin可以纯化什么蛋白
 
2016-07-20 22:07:03 295 1
用什么试剂可以测试COD?
 
2017-08-31 18:00:30 335 2
提取细胞蛋白过程中超声处理有没有什么注意事项
 
2016-12-19 23:02:33 292 1
什么是蛋白和多肽药物
 
2010-12-13 21:51:22 262 2
细胞蛋白WB可以做出来,但免疫荧光做不出来是为什么
 
2016-08-17 05:44:04 1003 1
格氏试剂和vilsmeier试剂可以反应吗
 
2016-12-26 17:30:44 241 1
什么机器可以一种试剂测微量元素
 
2016-12-01 12:11:46 465 1
什么是“无蛋白”和“多蛋白”
 
2013-10-12 06:52:39 339 1
流式细胞仪如何测细胞蛋白的磷酸化
 
2018-11-24 01:09:03 346 0
白细胞4.9,中性细胞49,c反应蛋白76说明什么
 
2018-11-15 08:42:03 269 0
什么是软亲核试剂和硬亲核试剂
 
2016-12-19 19:40:56 841 1
聚四氟乙烯瓶可以装六价铬和氢氧化钠试剂吗?
请问聚四氟乙烯瓶可以装六价铬和氢氧化钠试剂进行运输吗?会有反应吗... 请问聚四氟乙烯瓶可以装六价铬和氢氧化钠试剂进行运输吗?会有反应吗 展开
2017-08-20 01:56:30 858 1
用DNA合成YZ剂处理,什么时期的细胞数目会增加
 
2017-06-18 18:33:11 390 1
请问什么是软亲核试剂和硬亲核试剂?
 
2013-11-29 21:48:07 701 1
转录因子控制细胞表面蛋白“组合编码”

细胞核内的转录因子是决定细胞命运、形态、和生理功能的中心指挥者,而在细胞膜表面的蛋白则通过与细胞环境的相互作用来执行这些指令。“转录因子→细胞表面蛋白→生理功能”的框架被认为存在于一切涉及细胞与环境交流的生物学过程中。例如在发育的神经元中,科学家们常常假设转录因子通过调节细胞表面蛋白的表达,来控制神经元之间连接,形成特定的神经环路。

2022年5月24日,来自美国斯坦福大学与霍华德休斯医学研究所的知名学者骆利群教授,带领团队在Neuron期刊上发表研究论文,用一个定义谱系的转录因子Acj6为例子,展示了转录因子如何“四两拨千斤”,通过调节不同组合的表面蛋白的表达,控制不同神经元类型的连接。骆利群实验室的博士生谢琦婧和李介夫博士为本文的共同***作者。

早在2003年,骆利群教授团队发现转录因子Acj6特异性表达在果蝇嗅觉系统投射神经元 (projection neuron,PN)的一个谱系(lineage)中,并控制这些神经元特异性的树突靶向。不过,当时由于缺少直接测量特定细胞群体表面蛋白表达的方法,无法进一步知道Acj6以及其他转录因子如何通过细胞表面的蛋白质控制神经连接的特异性。

直到2020年,骆利群教授、本文的共同***作者李介夫博士与合作者发展了一种高时空分辨率的蛋白组学技术,在方法上实现了突破。这种技术使得研究人员可以直接在完整果蝇大脑内对指定细胞类型的表面蛋白组进行高精度的生物素标记、富集和分析,也为系统地研究转录因子如何在多细胞生物的完整组织中塑造细胞表面蛋白质组提供了可能。

▲相关阅读:骆利群/Alice Ting联合团队《细胞》发文,创新技术找到多个神经连接调节因子

在此次新研究中,研究人员运用这种蛋白组学技术,首先找到了转录因子Acj6调节哪些细胞表面蛋白来执行它的命令。他们分别在野生态和acj6功能丧失突变体中,对投射神经元进行了表面蛋白组的定量分析,然后基于蛋白组学的数据进行体内筛选,由此揭示了许多执行Acj6连接指示的分子。

这些表面蛋白有一些正如作者的猜测,属于细胞粘附分子,但还有一些则令人意外。比如,机械敏感离子通道Piezo。这种蛋白传统上被认为只介导神经元功能,但他们发现,失去机械敏感离子通道活性的Piezo突变体可以与野生型Piezo一样精准调控PN树突靶向。“这个结果***展示了Piezo独立于机械感觉离子通道的功能。”作者指出。 

▲在PN中敲除Piezo导致树突错误的靶向(白色箭头)

接下来,为了建立转录因子Acj6与其调控的表面蛋白在树突靶向中的功能性联系,研究人员在表达Acj6的投射神经元中特异性地敲除了acj6,同时又在这些神经元中特异性地表达了Acj6促进表达的表面蛋白。

实验结果表明,在不同神经元类型中,Acj6通过调控不同组合的表面蛋白表达来指定这类神经元特异的靶向。

“在不同神经元中,一个转录因子是通过调节相同、还是不同的细胞表面蛋白以指定它们的特异连接,这个问题过去并不清楚。”研究人员指出,“发育神经生物学长期存在一种假设,认为神经连接的特异性可能是由表面蛋白组合编码(combinatorial code)控制,现在我们***为这一假设提供了实验证据,展示了表面蛋白间的遗传相互作用模式(加法、减法和协同)。”

▲Acj6在不同神经元类型中通过调控不同表面蛋白(cell-surface executor)的表达来控制神经连接特异性

正如科学家们在论文中提及的那样,这篇文章为未来研究转录因子功能与机理提出了一个新的策略和方法的原型。

RNA提取磁珠属于纳米生物磁珠的一种,主要作用是用于核酸提取过程中的RNA提取,粒径分布在500nm左右,是洛阳吉恩特生物自主研发生产的高分子纳米磁性微球,该磁珠悬浮时间长,磁响应时间迅速,对DNA甲基化过程中的提取环节提供良好的支持,可明显缩短实验时间,提高实验效率,并在提取结果上保持稳定,配合核酸提取仪,更能实现快速的RNA提取。


2022-06-13 09:09:42 156 0
流式细胞术是不是只能检测细胞表面蛋白
 
2010-08-18 00:04:52 345 2
流式细胞术是不是只能检测细胞表面蛋白
 
2017-07-10 17:43:24 341 1

11月突出贡献榜

推荐主页

最新话题