仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

低场核磁共振技术用于光固化树脂固化反应研究

苏州纽迈分析仪器 2023-01-09 22:11:47 135  浏览
  • 低场核磁共振技术用于光固化树脂固化反应研究

    什么是光固化树脂?

    光固化树脂由树脂单体及预聚体组成,含有活性官能团,能在紫外光照射下由光敏剂引发聚合反应,生成不溶的涂膜,双酚A型环氧丙烯酸酯具有固化速度快、涂膜耐化学溶剂性能好,硬度高等特点。聚氨酯丙烯酸酯具有柔韧性好、耐磨等特点。光固化复合树脂是口腔科常用的充填、修复材料,由于它的色泽美观,具有一定的的抗压强度,因此在临床应用中起着重要的作用,我们用于前牙各类缺损及窝洞修复取得满意的效果。

    光固化树脂的优点

    (1)固化速度快,生产效率高;

    (2)能量利用率高,节约能源;

    (3)有机挥发分(VOC)少,对环境友好;

    (4)可涂装各种基材,如纸张、塑料、皮革、金属、玻璃、陶瓷等;

    因此,光固化涂料是一种快干、节能的环境友好型涂料。

    低场核磁共振技术用于光固化树脂固化反应研究

    纽迈PQ001低场核磁共振分析仪

    低场核磁共振技术主要是通过弛豫特性来研究聚合物分子的运动性。T2由自旋系统内部交换能量引起,反映了样品内部聚合物上氢质子所处的化学环境,与氢质子所受的束缚力及其自由度有关,而氢质子的束缚程度又与样品的内部结构密不可分。氢质子受束缚越大或自由度越小,T2越短。固化反应过程中,氢质子的T2会逐渐缩短,固化完荃后氢质子受到完荃的束缚,T2会缩短为定值,不再变化,T2与样品固化反应程度之间具有明显的对应关系。因此,可借助T2的变化在线观察样品在不同温度下的固化反应全过程,判断固化反应程度。

     

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

低场核磁共振技术用于光固化树脂固化反应研究

低场核磁共振技术用于光固化树脂固化反应研究

什么是光固化树脂?

光固化树脂由树脂单体及预聚体组成,含有活性官能团,能在紫外光照射下由光敏剂引发聚合反应,生成不溶的涂膜,双酚A型环氧丙烯酸酯具有固化速度快、涂膜耐化学溶剂性能好,硬度高等特点。聚氨酯丙烯酸酯具有柔韧性好、耐磨等特点。光固化复合树脂是口腔科常用的充填、修复材料,由于它的色泽美观,具有一定的的抗压强度,因此在临床应用中起着重要的作用,我们用于前牙各类缺损及窝洞修复取得满意的效果。

光固化树脂的优点

(1)固化速度快,生产效率高;

(2)能量利用率高,节约能源;

(3)有机挥发分(VOC)少,对环境友好;

(4)可涂装各种基材,如纸张、塑料、皮革、金属、玻璃、陶瓷等;

因此,光固化涂料是一种快干、节能的环境友好型涂料。

低场核磁共振技术用于光固化树脂固化反应研究

纽迈PQ001低场核磁共振分析仪

低场核磁共振技术主要是通过弛豫特性来研究聚合物分子的运动性。T2由自旋系统内部交换能量引起,反映了样品内部聚合物上氢质子所处的化学环境,与氢质子所受的束缚力及其自由度有关,而氢质子的束缚程度又与样品的内部结构密不可分。氢质子受束缚越大或自由度越小,T2越短。固化反应过程中,氢质子的T2会逐渐缩短,固化完荃后氢质子受到完荃的束缚,T2会缩短为定值,不再变化,T2与样品固化反应程度之间具有明显的对应关系。因此,可借助T2的变化在线观察样品在不同温度下的固化反应全过程,判断固化反应程度。

 

2023-01-09 22:11:47 135 0
低场核磁共振技术用于推进剂固化反应研究
低场核磁共振技术用于推进剂固化反应研究

推进剂又称推进药,有规律地燃烧释放出能量,产生气体,推送火箭和导dan的huo药。是一类在燃烧时能迅速产生大量高温气体的化学物质,可用来发身寸抢炮的弹丸、火箭和导dan等发射体。推进剂与火乍药、燃料相似,它们都能通过燃烧提供能量;但燃烧时的条件不同,燃料燃烧时需要有空气和氧气助燃,而推进剂和火乍药则不需要。

随着对高固含量、高燃速固体推进剂应用需求的日益增加,以及各种功能化助剂在固体推进剂配方中的广泛使用,推进剂药浆的良好的工艺性能日益重要。传统的推进剂固化工艺过程无法得到固化过程中内部状态变化的信息,固化时过于遵循实际经验,在固化完成后,通过力学性能及燃速压强指数测试等方法判断固化效果,分析固化机理,时常出现可重复性差、废品率高的缺点,难以科学、有序地进行新配方调制。

低场核磁共振技术主要应用于橡胶、塑料、食品、生命科学、地球物理、水泥基材料领域,利用聚合物大分子碳氢链上氢质子的磁共振响应,可有效测定样品中聚合物大分子的状态和所处的化学环境,分析大分子的结构演变,据此可进行反应工艺优化、老化过程研究、疲劳寿命预测、高聚物弹性体中水分和溶剂含量测定、橡胶等复合材料固化的在线监测。

纽迈PQ001系列低场核磁共振分析仪

低场核磁共振技术用于推进剂固化反应研究

低场核磁共振技术主要是通过弛豫特性来研究聚合物分子的运动性。T2由自旋系统内部交换能量引起,反映了样品内部聚合物上氢质子所处的化学环境,与氢质子所受的束缚力及其自由度有关,而氢质子的束缚程度又与样品的内部结构密不可分。氢质子受束缚越大或自由度越小,T2越短。固化反应过程中,氢质子的T2会逐渐缩短,固化完荃后氢质子受到完荃的束缚,T2会缩短为定值,不再变化,T2与样品固化反应程度之间具有明显的对应关系。因此,可借助T2的变化在线观察样品在不同温度下的固化反应全过程,判断固化反应程度。

2023-01-30 17:50:11 68 0
低场核磁共振技术用热固性酚醛树脂的固化反应研究

低场核磁共振技术用热固性酚醛树脂的固化反应研究

酚醛树脂的分类:

根据形态,酚醛树脂可分为固体酚醛树脂和液体酚醛树脂,其中固体酚醛树脂为黄色、透明、无定形块状物质,而液体酚醛树脂为黄色、深棕色液体。根据工程性能,固体酚醛树脂可分为热塑性酚醛树脂和热固性酚醛树脂。

热固性酚醛树脂的特性:

热固性酚醛树脂具有很强的浸润能力,成型性能好,体积密度大,气孔率低,用于耐火制品,该树脂在15℃- 20℃下可保持三个月.酚醛树脂制品优点主要是尺寸稳定,耐热、阻燃,电绝缘性能好,耐酸性强,它主要应用于运输业、建筑业、军事业、采矿业等多种行业,应用广泛.

热固性酚醛树脂是胶粘剂的重要原料。单一的酚醛树脂胶性脆,主要用于胶合板和精铸砂型的粘结。以其他高聚物改性的酚醛树脂为基料的胶粘剂,在结构胶中占有重要地位。其中酚醛-丁睛、酚醛-缩醛、酚醛-环氧、酚醛-环氧-缩醛、酚醛-尼龙等胶粘剂具有耐热性好、粘结强度高的特点。酚醛-丁睛和酚醛-缩醛胶粘剂还具有抗张、抗冲击、耐湿热老化等优异性能,是结构胶粘剂的优良品种。

低场核磁共振技术用热固性酚醛树脂的固化反应研究

 

纽迈PQ001低场核磁共振分析仪

低场核磁共振技术主要是通过弛豫特性来研究聚合物分子的运动性。T2由自旋系统内部交换能量引起,反映了样品内部聚合物上氢质子所处的化学环境,与氢质子所受的束缚力及其自由度有关,而氢质子的束缚程度又与样品的内部结构密不可分。氢质子受束缚越大或自由度越小,T2越短。固化反应过程中,氢质子的T2会逐渐缩短,固化完荃后氢质子受到完荃的束缚,T2会缩短为定值,不再变化,T2与样品固化反应程度之间具有明显的对应关系。因此,可借助T2的变化在线观察样品在不同温度下的固化反应全过程,判断固化反应程度。

2023-01-04 15:00:37 157 0
低场核磁共振技术用于运动活化能研究

低场核磁共振技术用于运动活化能研究

什么是活化能?

活化能是指分子从常态转变为容易发生化学反应的活跃状态所需要的能量。对基元反应,活化能即基元反应的活化能。对复杂的非基元反应,反应活化能是总包反应的的表观活化能,即各基元反应活化能的代数和。

低场核磁在多孔材料活化能方面的应用

低场核磁共振弛豫时间被证明是饱和液体的多孔材料中吸附质-吸附剂相互作用的独特探针。纵向和横向弛豫时间之比(T1/T2)与吸附质-吸附剂相互作用能(活化能)有关,可以引入一个基于弛豫时间之比的定量度量(ES)来表征这种表面相互作用的强度(活化能)。

多孔介质中液体的表面相互作用非常重要,特别是在多相催化领域,理解表面相互作用的能力对于高效合理的催化剂设计至关重要。探测液体饱和多孔介质中的液体-表面相互作用尤其具有挑战性。现有方法都有局限性,并且没有一个能够在实际反应条件下无损地探测催化剂表面分子的行为。

使用低场核磁共振弛豫测量的优点

相比高场核磁,弛豫测量对吸附相互作用的表征不依赖于NMR线型和“峰位”(与多孔介质中的液体或化学位移相关的实际峰位,可能受吸附质-吸附剂相互作用以外的因素影响)。

自旋晶格与自旋-自旋弛豫时间之比(T1/T2)可直接与脱附活化能有关,脱附活化能表征了吸附剂表面上蕞强的吸附位点,可以由程序升温脱附(TPD)方法确定。

低场核磁共振技术用于运动活化能研究的基本原理:

核磁共振弛豫技术已成为研究饱和多孔介质中液体表面相互作用的一种非侵入性、化学敏感的分析技术。由于分子运动性的变化,当液体分子吸附在固体表面时,检测到的T1和T2弛豫时间都会缩短;在自由液体中,T1约等于T2。T1和T2都受到被吸附分子(表面水分子)旋转相关时间变化的影响。然而,T2进一步受到与表面扩散相关的平移相关时间的影响。因此,当分子吸附在表面上时,其平移和旋转动力学的变化对T2的影响大于T1,导致T1>T2。

T1/T2值表明了同一催化剂中不同液体表面相互作用的相对强度。T1/T2比率可以用作表面亲和力的定性描述,并可以进一步反映出活化能。

2022-07-06 22:29:56 171 0
低场核磁共振技术用于烟丝水分研究

低场核磁共振技术用于烟丝水分研究


烟草材料中水分是烟草行业高度关注的指标, 它是影响卷烟加工生产、 储存运输、 感官评价的重要因素。 水分是反映烟草材料物理性质的重要参数之一, 含水率大小不仅几乎与物料所有性质密切相关( 如填充值、耐加工性、密度、弹性等物理特性及烟支燃烧特性), 而且是物料回潮、 干燥等热湿加工过程中工艺控制与调整的主要依据。因此, 对物料中水分状态的研究, 是理解干燥、 回潮等热湿加工现象及烟草物性变化规律的重dian。


低场核磁共振技术作为一种实时、 无损、无侵入的定量测量技术, 能够从微观的角度反映农产品的含水率等多种指标参数。低场核磁已技术可用于研究农产品的含水率、 水分分布、 水分活度, 以及农产品成熟度、农产干燥水分扩散等。 由于低场核磁检测可分析获取物料中水分子氢质子的自旋-自旋弛豫时间 T2, 该自旋弛豫时间反映了水分通过物理、化学作用与物料结合紧密程度的差异,因此 NMR 成为对农产品等物料中含水率预测和水分活度评价的一种有效手段。


低场核磁共振技术可用于不同含湿条件下的烟丝、 梗丝、 再造烟叶烟草材料中的水分赋存特性进行研究。


干燥前后与添加 20%石油醚提取物的烟丝T2反演谱图

 

【参考文献:不同烟草材料中水分赋存状态的低场核磁共振分析[J]. 烟草科技, 2017, 04(v.50;No.360):71-77+108.】


2022-04-02 18:08:04 240 0
低场核磁共振技术用于温度升高时活化能研究

低场核磁共振技术用于温度升高时活化能研究

什么是活化能?

活化能是指分子从常态转变为容易发生化学反应的活跃状态所需要的能量。对基元反应,活化能即基元反应的活化能。对复杂的非基元反应,反应活化能是总包反应的的表观活化能,即各基元反应活化能的代数和。

低场核磁在多孔材料活化能方面的应用

低场核磁共振弛豫时间被证明是饱和液体的多孔材料中吸附质-吸附剂相互作用的独特探针。纵向和横向弛豫时间之比(T1/T2)与吸附质-吸附剂相互作用能(活化能)有关,可以引入一个基于弛豫时间之比的定量度量(ES)来表征这种表面相互作用的强度(活化能)。

多孔介质中液体的表面相互作用非常重要,特别是在多相催化领域,理解表面相互作用的能力对于高效合理的催化剂设计至关重要。探测液体饱和多孔介质中的液体-表面相互作用尤其具有挑战性。现有方法都有局限性,并且没有一个能够在实际反应条件下无损地探测催化剂表面分子的行为。

使用低场核磁共振弛豫测量的优点

相比高场核磁,弛豫测量对吸附相互作用的表征不依赖于NMR线型和“峰位”(与多孔介质中的液体或化学位移相关的实际峰位,可能受吸附质-吸附剂相互作用以外的因素影响)。

自旋晶格与自旋-自旋弛豫时间之比(T1/T2)可直接与脱附活化能有关,脱附活化能表征了吸附剂表面上蕞强的吸附位点,可以由程序升温脱附(TPD)方法确定。

低场核磁共振技术用于温度升高时活化能研究基本原理:

温度升高时活化能会发生变化。核磁共振弛豫技术已成为研究饱和多孔介质中液体表面相互作用的一种非侵入性、化学敏感的分析技术。由于分子运动性的变化,当液体分子吸附在固体表面时,检测到的T1和T2弛豫时间都会缩短;在自由液体中,T1约等于T2。T1和T2都受到被吸附分子(表面水分子)旋转相关时间变化的影响。然而,T2进一步受到与表面扩散相关的平移相关时间的影响。因此,当分子吸附在表面上时,其平移和旋转动力学的变化对T2的影响大于T1,导致T1>T2。

T1/T2值表明了同一催化剂中不同液体表面相互作用的相对强度。T1/T2比率可以用作表面亲和力的定性描述,并可以进一步反映出温度升高时活化能的变化。

2022-06-29 23:36:12 147 0
电缆老化研究-低场核磁共振技术

电缆老化研究-低场核磁共振技术

电缆在电力系统中使用越来越广泛,但是随着运行时间的增长容易老化,威胁电力系统的安全运行。低场核磁共振分析技术可方便快捷地评价电缆的老化过程。

电缆老化的原因有哪些?

外力损伤

电缆敷设安装时不规范施工,容易造成机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤等。

长期过负荷运行

超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产乍附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。

化学腐蚀

电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。

电缆老化研究低场核磁共振技术原理

电缆在电场及其他物理化学因素的作用下,分子化学键容易断裂并重新组合生成新的化学结构。电缆老化过程表现出化学键断裂与交联的过程,化学键断裂的越多,重新组合交联的密度越大,复合绝缘子就会出现表面分化和整体脆化的不良特性。非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。通过弛豫信息的采集,可快速评价电缆老化过程。

2022-10-19 22:53:17 90 0
电缆老化研究-低场核磁共振技术

电缆老化研究-低场核磁共振技术

电缆在电力系统中使用越来越广泛,但是随着运行时间的增长容易老化,威胁电力系统的安全运行。低场核磁共振分析技术可方便快捷地评价电缆的老化过程。

电缆老化的原因有哪些?

外力损伤

电缆敷设安装时不规范施工,容易造成机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤等。

长期过负荷运行

超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产乍附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。

化学腐蚀

电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。

电缆老化研究低场核磁共振技术原理

电缆在电场及其他物理化学因素的作用下,分子化学键容易断裂并重新组合生成新的化学结构。电缆老化过程表现出化学键断裂与交联的过程,化学键断裂的越多,重新组合交联的密度越大,复合绝缘子就会出现表面分化和整体脆化的不良特性。非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。通过弛豫信息的采集,可快速评价电缆老化过程。

2022-10-19 22:52:38 93 0
树脂老化研究-低场核磁共振技术

树脂老化研究-低场核磁共振技术

不饱和聚酯树脂固化后,在长期使用中会发生老化现象,颜色变黄、发脆以致龟裂,表面失去光泽,强度下降,其他物理性能与化学性能也随之下降。影响树脂老化的因素很多,而且是交叉作用,机理较为复杂,与制品的使用条件(如温度、受力情况等)直接相关。

树脂老化的因素有哪些?

紫外线的作用:

不饱和聚酯树脂固化后,在长期曝晒下会老化。光老化的原因来自两方面;一方面,光的能量使树脂的共价键发生断裂;另一方面树脂本身的不纯性,造成了受破坏的突破口。结果使树脂加速降解。

空气中氧和臭氧的作用:

氧和臭氧可使树脂发生氧化降解、变色、表面龟裂以致剥落,电性能下降。在热与光的联合作用下老化加速。在室温及避光时,老化进展缓慢。聚酯中加入的Cu、Co、Zn等化合物可能呈离子型杂质态,能加速氧化降解。在加速老化时具有自由基连锁反应性质,破坏性较大。

水解降解作用:

树脂交联固化以后,酯键―COOR及―CH2―O―等键在酸和碱的催化下,或在热水中,会被水解,使分子链断裂,性能下降。在聚酯制品中大多加有玻璃纤维增强材料以及各种填料,水分容易渗入到以上材料与树脂的界面,使水解作用加剧。

树脂老化研究低场核磁共振技术原理

老化会使环氧树脂分子链运动变弱,整个老化过程表现出化学键断裂与交联的过程。非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。通过弛豫信息的采集,可快速评价树脂老化过程。

2022-10-12 20:44:36 110 0
自愈合混凝土研究(低场核磁共振技术)

自愈合混凝土研究(低场核磁共振技术)

混凝土是世界上使用蕞广泛的建筑材料。但它很容易出现裂缝,这意味着,结构物需要增加钢筋加以强化。强化过程中必然会出现部分“微裂缝”,这并不会直接导致强度损失。混凝土结构规范规定蕞大裂缝宽度小于等于0.3mm。但随着时间的推移,水与侵蚀性化学物一起进入这些裂缝并腐蚀混凝土。

什么是自愈合混凝土?

自愈合混凝土是指可自行修补裂缝的实验性混凝土,它包含有可生产石灰石的休眠的细菌孢子和细菌生长所需要的养分,通过作用于结构的腐蚀性雨水渗入加以激活,以期对混凝土开裂部分进行局部填充。这种新材料有可能会提高混凝土的使用寿命,并有效降低混凝土结构的维护成本。

自愈合混凝土的工作原理

研究人员将混凝土愈合所需的细菌孢子和营养物质作为颗粒添加到混凝土配合料中,这些能在强碱性混凝土环境中生存数十年的芽孢杆菌,利用乳酸钙作为这些细菌的营养来源。但水又成了微生物生长需要所缺少的成分,因此,孢子处于休眠状态。但当有水接触这一胶囊时,胶囊将会融化,细菌将开始生长,并以乳酸钙作为营养来源生成混凝土的主要成分石灰石。随后,裂缝将会“愈合”。自愈合混凝土中的杆菌细菌可以在石灰石中生存,且能不断地产生孢子当水渗入其中的时候,杆菌细菌就会自动生产出石灰石,从而修复好裂缝,一般历时3周就可以完成修复。现在还有一种含有机钙化合物的产品也被开始添加进自愈合混凝土之中,以此来增快自愈合混凝土的自愈速度。

低场核磁共振技术用于混凝土研究

低场核磁共振很早就被用来分析水泥的反应的过程,通过测试混合水泥浆液在不同反应时间下的弛豫时间谱,以水分布的变化反推水泥的反应过程。借助低场核磁共振技术,可研究新型水泥的水化反应过程。

低场核磁共振技术可在非破坏条件下连续监测水泥基材料孔结构的发展。在水泥基材料的孔隙中,通常填充有水分。在一定的射频能的激发下,处在磁场中的水分子会发生共振现象,进而表现出弛豫行为,其弛豫时间的长短与水分子所在的孔隙尺寸有着定量的关系,因此能够间接地得到孔结构的信息。

受限流体的弛豫主要受制于表面弛豫的影响。对于特定介质而言,t2与多孔介质的比表面积相关,在孔隙率相同时,孔径越小,比表面积越大,表面相互作用的影响越强烈,t2就越短。对多孔介质流体弛豫的研究提供了孔结构方面的信息。

2023-01-13 21:55:38 181 0
混凝土自愈合研究(低场核磁共振技术)

混凝土自愈合研究(低场核磁共振技术)

混凝土是世界上使用蕞广泛的建筑材料。但它很容易出现裂缝,这意味着,结构物需要增加钢筋加以强化。强化过程中必然会出现部分“微裂缝”,这并不会直接导致强度损失。混凝土结构规范规定蕞大裂缝宽度小于等于0.3mm。但随着时间的推移,水与侵蚀性化学物一起进入这些裂缝并腐蚀混凝土。

什么是混凝土自愈合?

混凝土自愈合是指可自行修补裂缝的实验性混凝土,它包含有可生产石灰石的休眠的细菌孢子和细菌生长所需要的养分,通过作用于结构的腐蚀性雨水渗入加以激活,以期对混凝土开裂部分进行局部填充。这种新材料有可能会提高混凝土的使用寿命,并有效降低混凝土结构的维护成本。

混凝土自愈合的工作原理

研究人员将混凝土愈合所需的细菌孢子和营养物质作为颗粒添加到混凝土配合料中,这些能在强碱性混凝土环境中生存数十年的芽孢杆菌,利用乳酸钙作为这些细菌的营养来源。但水又成了微生物生长需要所缺少的成分,因此,孢子处于休眠状态。但当有水接触这一胶囊时,胶囊将会融化,细菌将开始生长,并以乳酸钙作为营养来源生成混凝土的主要成分石灰石。随后,裂缝将会“愈合”。混凝土自愈合中的杆菌细菌可以在石灰石中生存,且能不断地产生孢子当水渗入其中的时候,杆菌细菌就会自动生产出石灰石,从而修复好裂缝,一般历时3周就可以完成修复。现在还有一种含有机钙化合物的产品也被开始添加进混凝土自愈合之中,以此来增快混凝土自愈合的自愈速度。

低场核磁共振技术用于混凝土研究

低场核磁共振很早就被用来分析水泥的反应的过程,通过测试混合水泥浆液在不同反应时间下的弛豫时间谱,以水分布的变化反推水泥的反应过程。借助低场核磁共振技术,可研究新型水泥的水化反应过程。

低场核磁共振技术可在非破坏条件下连续监测水泥基材料孔结构的发展。在水泥基材料的孔隙中,通常填充有水分。在一定的射频能的激发下,处在磁场中的水分子会发生共振现象,进而表现出弛豫行为,其弛豫时间的长短与水分子所在的孔隙尺寸有着定量的关系,因此能够间接地得到孔结构的信息。

受限流体的弛豫主要受制于表面弛豫的影响。对于特定介质而言,t2与多孔介质的比表面积相关,在孔隙率相同时,孔径越小,比表面积越大,表面相互作用的影响越强烈,t2就越短。对多孔介质流体弛豫的研究提供了孔结构方面的信息。

2023-01-06 18:47:49 214 0
木材吸着水研究(低场核磁共振技术)

木材吸着水研究(低场核磁共振技术)

木材中水分存在哪些状态?

按水分与木材的结合形式与位置,可分为三类:自由水、吸着水和结合水。木材中主要水分是自由水和吸着水,化合水的含量非常少。日常使用中,吸着水对木材的性能起着至关重要的作用。

木材自由水:

木材中的毛细管系统有两大类,即大细管系统和微毛细管系统。木材中的水分就存在于这些毛细管系统之中。

由细胞腔组成的大毛细管系统,对水分的束缚力很小以至无束缚力,水分能够从大毛细管系统的断面自由地蒸发出去。因此,把存在于大毛细管系统内的水分,叫做自由水。自由水的增减,只能影响木材的重量、保存和燃烧能力,而不影响木材的性质。

木材吸着水:

由互相通连的细胞壁构成的微毛细管系统,对水分有程度不同的束缚力,若要使微毛细管系统内的水分向空中蒸发,必须把空气的湿度降低到一定的程度;或者在加热条件下加速水分的运动,才能克服微毛细管的束缚力,向空气中蒸发。同时,微毛细管系统不但在一定的条件下向空气中蒸发水分,而且也能够吸收空气中的水分。因此,把存在于微毛细管系统内的水分,叫做吸着水。吸着水的增减变化,不仅使木材发生膨胀和收缩,而且也影响到木材的其它物理力学性质。

木材的纤维饱和点:

木材细胞壁含水率(吸着水)在饱和状态,而细胞腔无自由水时的含水率,称纤维饱和点。通常以30%为木材纤维饱和点,但不同木材略有差异。

纤维饱和点是木材特性变化的转折点。在纤维饱和点以下时,木材细胞壁木纤维就像压缩饼干一样吸水,木材发生膨胀,含水率增加同时木材强度降低;当达到纤维饱和点时,木材的细胞和细胞间隙就像水库一样蓄水,木材体积和性能基本不发生变化;反过来,在纤维饱和点以上时,木材失水木材体积与性能基本不变,在纤维饱和点以下时,木材失去水分木材收缩,木材强度增加。

通俗点说来,木材干燥的过程中,将木材的纤维饱和点控制在30%的临界点,木材的硬度会得以保证。当木材含水率没有得到有效的控制,将对木材的使用产生不良的影响。

低场核磁共振技术研究木材吸着水原理

固态冰与液态水的核磁共振T2弛豫时间相差很大,冰的T2弛豫时间仅约6us,木材内吸着水的T2弛豫时间一般为毫秒级,很容易区分。核磁共振分析仪是以质子为探针,能够准确表达多孔介质内水分含量。通过选择适当的温度使木材细胞腔内自由水产生冻结,此时吸着仍然处于液态,从而可以准确获得细胞壁内吸着水的信号总量。

2022-12-19 16:10:34 125 0
石墨烯表面疏水性能研究-低场核磁共振技术

石墨烯表面疏水性能研究-低场核磁共振技术

什么叫亲水性和疏水性?

亲水性:指带有极性基团的分子,对水有较大的亲和能力,可以吸引水分子,或易溶解于水。这类分子形成的固体材料的表面,易被水所润湿。具有这种特性都是物质的亲水性。

疏水性:分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。

材料表面润湿过程的实质是物质界面发生性质和能量的变化。当水分子之间的内聚力小于水分子与固体材料分子间的相互吸引力时,材料被水润湿,此种材料为亲水性的,称为亲水性材料;而水分子之间的内聚力大于水分子与材料分子间的吸引力时,则材料表面不能被水所润湿,此种材料是疏水性的(或称憎水性),称为疏水性材料。

石墨烯材料独牛寺的结构、大的比表面积,使得它拥有优异的力学、热学、电学和磁学性能,在各个领域的应用价值逐渐突显,逐渐成为很多领域研究的焦点。比表面积是其一个重要的性质,是衡量石墨烯材料性能的一项非常重要的参量,低场核磁共振技术是一种先进的测试悬浮液颗粒表面特性的方法,低场核磁共振法测试时间短,不需要繁琐的样品处理过程,无需引入外部试剂。在监测悬浮液状态下颗粒与溶剂之间的表面化学、亲和性、润湿性等方面具有独牛寺的优势。

低场核磁共振技术用于石墨烯表面疏水性能研究基本原理

材料的亲水性与疏水性与颗粒的团聚与分散存在直接的关联,低场核磁共振技术可研究颗粒材料在水中的分散规律及分散行为与颗粒的润湿性的关系,通过颗粒间的相互作用了解分散作用机制。

对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

2022-11-23 23:09:29 190 0
二氧化硅表面疏水性研究-低场核磁共振技术

二氧化硅表面疏水性研究-低场核磁共振技术

什么叫亲水性和疏水性

亲水性:指带有极性基团的分子,对水有较大的亲和能力,可以吸引水分子,或易溶解于水。这类分子形成的固体材料的表面,易被水所润湿。具有这种特性都是物质的亲水性。

疏水性:分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。

材料表面润湿过程的实质是物质界面发生性质和能量的变化。当水分子之间的内聚力小于水分子与固体材料分子间的相互吸引力时,材料被水润湿,此种材料为亲水性的,称为亲水性材料;而水分子之间的内聚力大于水分子与材料分子间的吸引力时,则材料表面不能被水所润湿,此种材料是疏水性的(或称憎水性),称为疏水性材料。

二氧化硅可以作为润滑剂,是一种优良 的流动促进剂,主要作为润滑剂、抗黏剂、助流剂。特别适宜油类、浸膏类药物的制粒,制成的颗粒具有很好的流动性和可压性。还可以在直接压片中用作助流剂。作为崩解剂可大大改善颗粒流动性,提高松密度,使制得的片剂硬度增加,缩短崩解时限,提高药物溶出速度。颗粒剂制造中可作内干燥剂,以增强药物的稳定性。还可以作助滤剂、澄清剂、消泡剂以及液体制剂的助悬剂、增稠剂。

低场核磁共振技术用于二氧化硅表面疏水性研究研究基本原理

材料的亲水性与疏水性与颗粒的团聚与分散存在直接的关联,低场核磁共振技术可研究颗粒材料在水中的分散规律及分散行为与颗粒的润湿性的关系,通过颗粒间的相互作用了解分散作用机制。

对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

2022-11-16 14:50:48 165 0
低场核磁共振技术用于原料药(API)的结晶状态研究(结晶与非

低场核磁共振技术用于原料药(API)的结晶状态研究(结晶与非晶、转晶过程)

口服给药途径是最常用的给药途径,由于固体口服剂型使用组合化学和高通量筛选,水溶性差的活性药物成分(API)的数量正在增加。原料药在水中的溶解度对其在胃肠道中的溶解速度至关重要。水溶性差的原料药在胃肠液中的低溶解性大大限制了其口服吸收,导致其生物利用度低。


在配方的开发过程中,采用了各种提高溶解度的方法。这些方法包括改变晶型(多态性、共晶)、减小粒径、使用固体分散技术进行非晶化等等.


利用固体分散技术进行非晶化被认为是一种有前途的制药技术,可以改善水溶性差的药物的溶解性。大量研究表明,这种技术大大提高了溶解度。总的来说,对于固体分散体配方的开发,在整个保质期内保持无定形状态仍然是一个巨大的挑战。因此,有必要对配方中原料药的结晶状态进行详细评估。



低场核磁共振技术是一种用于测量1H核磁共振弛豫的台式分析仪。可以分析固体和液体样品,并方便快速地测量样品的T1和T2弛豫时间。迄今为止,低场核磁共振技术已被广泛用于科学领域的研究,尤其是化学、食品、材料等领域。


低场核磁技术在鉴别原料药的非晶态和晶态形式方面也非常有效。根据核磁共振弛豫参数,比如T1和T2弛豫时间,可以区分结晶形式的差异。它可以用来评估原料药的结晶状态,作为传统PXRD的补充方法。该技术测试时间短,也无需任何复杂的操作。


实验结果表明,结晶和非结晶API的T1弛豫行为存在显著差异。结晶形式的T1值大于非结晶形式的T1值。众所周知,弛豫时间和旋转相关时间之间的关系反映了化合物的分子运动性。一般来说,在固态下,分子运动性越低,T1弛豫时间越长。使用低场核磁共振观察到的T1弛豫行为对于评估API粉末的结晶状态非常有用。


将API和PVP在纳米尺度上充分混合,然后形成均匀的固体分散体系。固体分散体的T1值与原始无定形API和PVP的T1值显著不同。这一结果表明,非晶态原料药的分子流动性受到与PVP相互作用的实质性影响,说明低场核磁共振技术可以评估配方中各组分之间的相容性和相互作用。


根据测定T1弛豫行为,可以监测了物理混合物中结晶转化过程。


推荐仪器:PQ001核磁共振原料药结晶与非晶状态测试仪

2022-03-25 12:46:29 389 0
低场核磁法用于gap固化与溶胀性研究

低场核磁法用于gap固化与溶胀性研究

溶胀是指溶剂分子扩散进入高分子内部,使其体积膨胀的现象。溶胀行为是高分子材料的一项重要参数,高分子材料的平衡溶胀率会影响到材料中物质的扩散系数,表面润湿性和机械强度等。很多研宄将溶胀特性作为一个设计参数来制备具有特殊应用的智能材料。

溶胀是高分子材料特有的现象,其原因在于溶剂分子与高分子尺寸相差悬殊,分子运动速度相差很大,溶剂分子扩散速度较快,而高分子向溶剂中的扩散缓慢。因此,高分子溶解时首先是溶剂分子渗透进入高分子材料内部,使其体积增大,即溶胀。随着溶剂分子的不断渗入,溶胀的高分子材料体积不断增大,大分子链段运动增强,再通过链段的协调运动而达到整个大分子链的运动,大分子逐渐进入溶液中,形成热力学稳定的均相体系,即溶解阶段,如下图所示。

 

溶胀有两种:

无限溶胀:线形聚合物溶于良好的溶剂中,能无限制吸收溶剂,直到溶解成均相溶液为止。所以溶解也可看成是聚合物无限溶胀的结果。例:天然橡胶在汽油中;PS在苯中。

有限溶胀:对于交联聚合物以及在不良溶剂中的线形聚合物来讲,溶胀只能进行到一定程度为止,以后无论与溶剂接触多久,吸入溶剂的量不再增加,而达到平衡,体系始终保持两相状态。

低场核磁法用于gap固化与溶胀性研究:

低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。

低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、无创、无损的测定水组分分布的方法。

纽迈PQ001系列低场核磁共振分析仪

2023-01-29 21:00:51 97 0
表面疏水性变为亲水性过程研究-低场核磁共振技术

表面疏水性变为亲水性过程研究-低场核磁共振技术

什么叫亲水性和疏水性

亲水性:指带有极性基团的分子,对水有较大的亲和能力,可以吸引水分子,或易溶解于水。这类分子形成的固体材料的表面,易被水所润湿。具有这种特性都是物质的亲水性。

疏水性:分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。

材料表面润湿过程的实质是物质界面发生性质和能量的变化。当水分子之间的内聚力小于水分子与固体材料分子间的相互吸引力时,材料被水润湿,此种材料为亲水性的,称为亲水性材料;而水分子之间的内聚力大于水分子与材料分子间的吸引力时,则材料表面不能被水所润湿,此种材料是疏水性的(或称憎水性),称为疏水性材料。

颗粒在水中会发生聚团,如混疑、选择性聚团、疏水聚团和油团聚等已在矿物加工,水处理及食品加工等行业获得广泛的工业应用。在粉体技术、化工、涂料和医药等领域中,聚团的逆过程(颗粒分散)则是提高工艺效率,改善产品质量和性能的关键技术手段。

低场核磁共振技术

材料的亲水性与疏水性与颗粒的团聚与分散存在直接的关联,低场核磁共振技术可研究颗粒材料在水中的分散规律及分散行为与颗粒的润湿性的关系,通过颗粒间的相互作用了解分散作用机制。

颗粒分散体中溶剂的弛豫速率与可用颗粒表面积成线性比例。与游离聚合物相关的溶剂或聚合物环和尾部内的溶剂在弛豫速率方面没有显著变化,因为它们仍然具有很高的流动性。当聚合物在颗粒表面形成吸附层时,由于水分子在近表面区域的比例和/或停留时间增加,总的弛豫速率增强。通过低场核磁技术的弛豫差异,即可描述颗粒分散性。

2022-11-30 15:55:07 150 0
低场核磁技术用于橡胶老化研究

低场核磁技术用于橡胶老化研究

橡胶老化现象

由于橡胶制品的使用越来越频繁,橡胶产品在多数人的印象中是性能优异且各方面使用体验都很好,许多老客户也慢慢感觉到橡胶制品老化的现象,橡胶制品为什么会出现老化现象。

橡胶产品为什么会出现老化?

橡胶树脂的粘合性比许多橡胶都要高,但橡胶同其它橡胶一样,也会发生老化现象,由于内部分子链断裂,使橡胶的性能发生了很大的变化。对于橡塑制品来说,橡胶产品危害蕞大的就是紫外线,紫外线会直接导致橡胶分子链的断裂,这是因为橡胶制品可吸收光能使橡胶内产生自由分子。

 

橡胶产品老化的原因主要有以下三点:

1. 经常有高温或高温环境。高温度会加速橡胶材料的氧化环境,从而导致老化。

2. 化学因素。归根结底,橡胶材料是一种化学物质,有些化学因素会加速其老化。

3. 臭氧。硅材料很怕臭氧,会使橡胶制品的性能迅速下降,老化得很快。

橡胶老化的试验方法:

橡胶老化是橡胶性能受损的主要原因之一。由于产品的配方和使用条件各异,老化历程快慢不一,所以,需要通过检测技术对橡胶样品进行测试,以评定橡胶老化的程度及其对性能的影响。低场核磁技术可用于橡胶老化检测。

低场核磁技术研究橡胶老化基本原理:

纽迈VTMR系列低场核磁共振分析仪

低场核磁共振技术是通过测定恒定磁场强度下样品中1H的弛豫时间,从而获得分子结构动态信息的方法。其基本原理是通过施加射频脉冲给予处于恒定磁场中的样品,使氢质子发生共振,质子所吸收的射频波能量以非辐射的方式释放后返回到基态,此过程被称为弛豫过程。弛豫又可分为横向弛豫和纵向弛豫,样品内部氢质子所处物理化学环境及存在状态决定了弛豫时间的长短。从物理机制上,核磁弛豫过程是自旋氢原子核与环境之间通过相互作用进行能量交换的过程。核磁共振是自旋不为零的原子在静磁场中被磁化后,与特定射频场产生共振吸收现象,吸收射频脉冲能量后自旋核与周围物质相互作用,释放能量,并恢复初始状态过程。

橡胶老化是交联体系发生变化的综合过程,核磁共振的弛豫机制对这种变化具有高敏感性,其主要表现为横向弛豫时间T2随反应时间延长的规律性变化。因此通过研究老化过程中橡胶样品的弛豫时间变化规律及其与老化性能的关系,就可以间接评估橡胶老化的特性。

2023-01-11 16:28:57 155 0
低场核磁共振法用于淀粉玻璃化转变温度研究

低场核磁共振法用于淀粉玻璃化转变温度研究

淀粉不仅是食品中的重要的组成成分,而且也是有用的食品工业原料,应用用途十分的广泛。大家都知道,淀粉由直链淀粉和支链淀粉组成,直链淀粉为一条直链的结构,分子量较小,支链淀粉是高度分支,分子量通常较高。由于来自不同种植物的淀粉在结构,组成和分子状态方面的差异,来自不同的来源的淀粉具备各自的使用功能。

食品的玻璃化转变可能会引起食品的货架寿命和质构等的改变,已成为当今的研究热点。玻璃化转变温度的这个概念目前被广泛的应用在食品科学的领域当中。玻璃化转变是一种二级相变,物质不会放出潜热,不发生相变,他的宏观上在物质的物理、电学、热及力学等其他性质上,表现出变化或者不连续性。当食品处在玻璃态时,食品的分子分散的速率就会减慢,产品的品质就会提高,然而,当食品发生了玻璃化转变之后,它的理化性质就会发生明显的改变。淀粉的玻璃化转变对机械性能的影响很大,如引起淀粉的质构特性和产品老化等重要影响。因此,研究淀粉的玻璃化转变温度是非常重要的。

聚合物在比较低的温度下,分子的热运动所需要的能量就很低,只有分子中的链节、支链等比较小的运动单元可以运动,而链段和分子链处于被冻结的状态,聚合物在外界作用下只能发生微小的形变,这个时候聚合物表现出来的力学性质和玻璃相似,所以把这种状态叫做玻璃态。聚合物发生了玻璃化转变时的温度称为玻璃化转变温度(Tg)。当食品处在玻璃态的时候,受扩散控制的食品的品质变化的反应就会变得非常的缓慢,有的甚至不会发生。这时的食品的各个方面的性质就会非常的稳定,对于食品的保存和新鲜程度等品质的保持就十分有利。大部分的谷物类食品是以淀粉为原料的,如小吃、焙烤食品等。面包在储藏的过程会发生老化(硬化),严重影响面包的品质,淀粉结晶就是影响面包老化的重要因素。当储藏温度低于Tg时,淀粉就不会发生结晶,所以将面包在玻璃态时储藏,对yi制面包老化很有效。食品中的玻璃化转变会影响食品的货架寿命和质构等。

低场核磁共振法测定玻璃化转变温度:

NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃芳位、定量的研究样品。

玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。

当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。

T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其zui低点,即为相转变点,所对应温度为Tg。

2022-11-25 17:32:20 171 0

9月突出贡献榜

推荐主页

最新话题