全部评论(1条)
-
- *羯之星 2018-04-04 17:44:50
- 医学光声成像 ZG人的骄傲啦。在美国的ZG教授做的成果。平心而论是我这些年Z看好的成果。也是把高精度的探测和成像推到了一个ji致。因为红外线的投射深度远高于其他光线。所以成像Z高可以到5cm深度。牛逼把。意味着不用切开某处皮肤只要照照红外线突然你就可以看到皮肤下5cm处有没有肿瘤啊啥的。而且精度这么高。简直不能忍啊。3d模型的建立也很强大,光数据量就大的不得了。感觉他们团队真是夜以继日啊。3年中每年都听他们的报告。次次都有惊喜。果断拜之。 在做的几个项目: 1. fluorescence tomography(荧光3d医学成像)此技术摒弃了传统的CT,MRI所使用的X光,强磁场,我们在患者体内注入特殊纳米分子,然后使用红外线激发荧光。然后根据扫描结果重建3D图像。此法非常安全,相对而言更经济,然而工程难度极大,要求很高。是未来医学光学的走向。 2. IR tumor treatment(红外光肿瘤ZL)使用红外光的热效应烧死肿瘤。根据3D模型判断使用光强和时长。此法简洁安全,不用开刀,不流血,痛感低。特别适合年纪大的人和比较敏感的区域。我们用在前列腺癌的ZL了。 3. ICG tumor marking.(生物荧光染料肿瘤标记)Indocyanine green 标记肿瘤细胞,此染料安全,精度高。常备用于妇科手术和乳腺癌手术的标记。3d模拟和实时图像的拟合也常以此标记为关键点。 4. raman spectroscopy for tumor cell detection in nano tubes (使用拉曼光谱和纳米管分类细胞)这个是Z前沿的科技了。非常非常新。个人觉得10年内不会有大的进步,虽然每年发的文章都堆起来了。纳米管是可以分类细胞的,由于粘性和大小的不同,细胞在纳米管中的走向和速度会有变化。使用拉曼光谱断定细胞速度和走向并对比已知性息,可以断定具体的细胞种类。计划用于快速活检。 5. transparent|reflected light spectroscopy for Hepatocellular carcinoma(反射透射光谱辅助肝切除手术)肝癌复发率极高,并且手术时偶尔出血量极大。很难分辨分离区域大小。然而正常肝脏的光学性质比较稳定,且体积大表面光滑,比其他器官更容易测定反射透射光谱。由光谱变化测定此区域是否病变从而辅助分离术。6. Time of flight 此法可以使用的地方太多了。可以用于血氧量测量,心肺功能测量。各种。也有很多人用在其他地方。
-
赞(0)
回复(0)
热门问答
- 现在的光学在生物医学方面的Z前沿的研究与应用有哪些?
现在的光学在生物医学方面的Z前沿的研究与应用有哪些?
- 一些有关激光方面的前沿研究
- 前沿研究 以及一些重难点。。。 论文需要 哪位朋友有这方面资料贡献下 小弟不甚感激```
- 分子筛催化方面的研究有哪些期刊
- 互联网大数据在舆情方面的应用有哪些?
- 脂肪酸在化妆品方面的应用
- 压力传感器在航空航天方面的应用
- 做好要有结构和原理的(带图)... 做好要有结构和原理的(带图) 展开
- 稀土在航空航天方面的应用
- 要有针对性,至少从四个方面进行论述,每个方面都要做到详细,具体。要有具体的例子,Z好细分到具体的稀土元素在具体的方面上的应用及前景。Z好有图片,有链接Z重要的,要有条理!... 要有针对性,至少从四个方面进行论述,每个方面都要做到详细,具体。要有具体的例子,Z好细分到具体的稀土元素在具体的方面上的应用及前景。 Z好有图片,有链接 Z重要的,要有条理! 希望能有应用方面的图表,能够直观地反映问题 提醒一下 额t囧 四个反面都是指在航空航天方面,不是农业、新材料什么的 展开
- ALD在钙钛矿方面的应用
“碳达峰”和“碳中和”一直都是能源领域的热点话题,作为助力“双碳”战略的生力军,光伏产业具有举足轻重的地位。目前光伏的主力是硅太阳能电池,它们具有效率高、稳定性好、产业链完备、使用寿命长的优势。然而,晶硅电池的转换效率到达瓶颈,且从硅料到组件至少经过4 道工序,单位制程需要3 天以上,同时还需要大量人力、运输成本等。为了让太阳能的利用更加便捷、高效且廉价,科学界和工业界正在研制新型太阳能电池;钙钛矿太阳能电池就是备受关注的后起之秀,钙钛矿叠层效率极限可达50%,而钙钛矿组件在单一工厂完成生产,原材料经过加工后直接成组件,没有传统的“电池片”工序,大大缩短制程耗时。但是,如何制备大面积且能保持较高效率的钙钛矿太阳能电池,依然是难题,也成了制约其产业化应用的瓶颈。
原速ALD在钙钛矿电子传输层、空穴传输层、钝化层、封装阻水层等领域已取得了突破性进展,获得了业界的认可。为了更高效地服务于世界光伏产业高地,原速也在上海建立了技术研发中心。截止目前,公司已形成服务于钙钛矿电池研发、中试、100MW、 GW级量产的产线ALD技术解决方案。
1、ALD-SnO2 应用于钙钛矿电池电子传输层
• ALD 相比于传统沉积技术,在制备超薄膜时具有更优异的均匀性和保形性,以及缺陷更少的优点
2、ALD-NiO 应用于钙钛矿电池空穴传输层
• ALD 可用于制备性能优异的超薄(<10 nm)NiO 空穴传输层
3、ALD 应用于钙钛矿电池钝化层
• ALD 超薄膜可以应用于界面处,通过和悬挂键反应的方式减少表面缺陷,或排斥载流子,达到钝化的效果
4、ALD 应用于钙钛矿电池封装
• 致密的 ALD 膜可达到有效的阻水氧的效果
- ALD在锂电池方面的应用
锂离子电池在充放电过程中,锂离子在正负极之间穿梭。在充电过程中,锂离子从正极脱出经过电解液和隔膜到达负极发生反应。在放电过程中锂离子从负极返回正极嵌入正极材料。在循环过程中,正极材料面临许多的问题如自身体积的变化,晶体结构的改变,界面结构的退化等导致的容量衰减。同样的,负极材料也面临着体积膨胀,枝晶的生长导致的负极材料的粉碎溶解、从集流体表面剥离脱离、电接触变差,短路等一系列问题,这些问题导致材料的容量和循环性能严重下降,甚至电池的起火爆炸。
原子层沉积(ALD)薄膜沉积可以合成具有原子级精度的材料,基于自限的膜纳米级的控制,可以实现多组分膜的化学成分控制、大面积的薄膜/工艺的可重复性,具备低温处理以及原位实时监控等技术特征。该技术在锂离子电池,太阳能电池,燃料电池以及超级电容器中都具有广泛的应用。
ALD已经被公认是一种非常有前途的工具可以用来解决锂离子电池以及其他电能储存设备所面临的问题。ALD在锂离子电池中的应用主要分为两个方面:(1)高性能电池电极,隔膜,集流体材料等的制备;(2)表面修饰。其应用主要总结在下图:
1、ALD在电极材料及电解质制备中的应用
a、ALD 用于负极材料的制备
采用ALD技术制备的负极材料主要集中在过渡金属氧化物(TMOs), 如RuO2, SnO2, TiO2和ZnO. 其能量密度比传统的石墨电极高。同时,为了解决TMOs负极材料所面临的挑战,如SnO2在循环过程中较大的体积变化,TiO2低的电子跟离子电导率,由超高电导率的碳基材料如石墨烯,碳纳米管以及Mxenes与TOMs组成的复合负极材料可以很好的融合两者的优势。
如:ALD制备的TiO2/CNF-CFP(carbon fiber paper)负极,具有高可逆容量(272 mAh g−1 at 0.1 A g−1),超高倍率性能(133 mAh g−1 at 40 A g−1) 以及超长循环稳定性(≈ 93%容量保持率在10000 圈 at 20 A g−1)。
b、用于正极材料的制备
通过ALD技术制备的正极材料有非锂化正极如V2O5, FePO4; 锂化正极如LiFePO4, LiCoO2以LixMn2O4。
如TiO2/V2O5/@CNT paper正极在100 mA g-1的电流密度下的放电比容量为400 mAh g-1,达到了理论放电比容量。 同时,正极材料V2O5的溶解问题可以通过TiO2层得到,同时不损失容量跟倍率性能。
c、SSEs固态电解质的制备
归功于其安全性及循环稳定性,全固态锂离子电池近来成为了研究的热点。ALD可以解决全固态锂离子电池所面临的两大关键性挑战:a.高界面阻抗,b.低离子电导率。 最近采用ALD制备的固态电解质有LiPON, Li7La3Zr2O12, LixAlySizO, LixTayOz, LixAlyS and Li2O-SiO2.这些含锂SSEs提供了一个关键的技术平台来制备高能量密度,长寿命以及安全的可充放电池。如下图所示,ALD制备的LLZO为制备3D全固态锂离子微电池提供了一条技术路线。
2、ALD在电池电极,隔膜,集流体等表面修饰领域的应用
a、ALD对负极表面修饰的应用
在负极材料中,ALD表面/界面修饰技术主要为了解决从SEI膜引发的系列问题。在循环过程中,SEI膜的大量形成以及体积变化会引起电极的破坏,从而引发新的暴露面导致容量的衰减。如在石墨负极表面沉积Al2O3可以在电池循环了200圈之后有效地保持98%的首圈容量。
锂金属作为负极材料的未来之星,在锂金属的沉积跟剥离过程中,锂枝晶的生长导致电池短路的问题亟待解决。采用ALD技术在锂金属表面构建例如有机/无机复合人工SEI膜,可以有效地抑制锂枝晶的生长。
b、ALD对正极表面的修饰作用
为了解决正极材料表面所面临的电解液分解,相变,析氧以及过渡金属溶解等问题,采用ALD技术在正极材料表面沉积保护层可以作为物理阻挡层或者HF清除层,从而有效地提高电池的循环稳定性跟倍率性能。在正极材料(层状结构:LiCoO2, LiNixMnyCozO2,富锂(Li-rich)xLi2MnO3·(1 − x)LiMO2(M = Mn, Ni, Co),尖晶石结构LiMn2O4)表面沉积的ALD镀层主要可以分为四类:a金属氧化物:Al2O3, TiO2, ZrO2, MgO, CeO2, Ga2O3; b氟化物:AlF3, AlWxFy; c磷化物:AlPO4,FePO4; d含锂化合物:LiAlO2, LiTaO3, LiAlF4。
- 化学与材料科学有哪些研究前沿和热点
- 红外热成像仪在建筑电气方面的应用
- 手持光谱仪在贵金属检测方面的应用
手持光谱仪在贵金属检测方面有着广泛的应用。以下是几个常见的应用领域:
贵金属鉴别:手持光谱仪可以通过分析贵金属的光谱特征,确定其成分和纯度。通过比对样品光谱与已知贵金属光谱数据库,可以快速识别和鉴别金、银、铂等贵金属。
市场监管:在贵金属市场监管中,手持光谱仪可以帮助监测机构或消费者验证贵金属产品的真伪。通过对样品进行光谱分析,可以确认产品是否含有标称的贵金属成分,防止假冒伪劣产品出现。
防伪溯源:手持光谱仪可以用于贵金属产品的溯源和防伪。通过建立贵金属产品的光谱数据库,可以对产品进行标识,并通过光谱特征进行溯源验证,确保产品的来源和真实性。
公安安全:手持光谱仪可用于犯罪现场勘查中贵金属物证的鉴定。通过采集物证样品的光谱,与参考光谱对比分析,可以确定物证中是否含有贵金属,提供调查破案的线索。
环境监测:贵金属在环境中的存在常常与污染有关。手持光谱仪可以用于现场快速检测土壤、水体和空气中贵金属的含量,帮助环保部门进行环境监测和污染源追踪。
手持光谱仪的应用在贵金属领域具有非常重要的意义,它能够提供快速、准确的贵金属分析结果,为各个领域的工作提供支持和保障。
赢洲科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。
- rpm技术在模具制造方面的应用中有哪些常用的工艺方法
- 超纯水在LC-MS生物医学分析中的应用
LC-MS的强大功能已经得到了生物医学实验室的认可。1,2现在的LC-MS仪器已经从研究到常规临床实验室范围广泛使用,并有效应用于以下领域:
· ZL药物监测 - 测量血浆,血液或组织中的药物(例如免疫YZ剂)
· 滥用药物测试 - 测量在尿液或唾液中的药物(例如哌替啶,等等)
· 激素测试 - 测量血清或血浆中的激素(例如类固醇或甲状腺激素)
· 生物胺分析 - 测量血浆或尿液中的生物胺(如儿茶酚胺)
· 新生儿筛查 - 通过使用LC-MS水平监测氨基酸和酰基肉碱检测可ZL的疾病
LC-MS仪器相对于其他分析工具具有很强的吸引力,原因在于该技术能够以非常高的灵敏度同时测量多种复杂分析物。此外,速度和信任也是患者护理的关键因素,同时成功的LC-MS生物医学分析具有高度灵敏度,可追溯性强和数据可靠的特性。因此,对于生物医学用LC-MS工作流程中的试剂水及其水在LC-MS成功分析实践中的作用将通过以下三个方面进行介绍。
灵敏度
超纯水被广泛用于LC-MS流程的各个环节(图1),所以是导致实验数据鬼峰,基线噪音和高MS背景等这些原因的主要污染源。同时也会使仪器或方法的灵敏度下降,使一些低浓度分析变的困难3。为了避免干扰,确保检测到的分析物是来自样品,而非来自实验用水4,实验过程需要使用高质量的超纯水,避免数据偏差和再次污染5。
Figure 1. The role of water in the LC-MS laboratory
超痕量分析是LC-MS生物医学分析中的一个应用领域,在激素检测中,相较于其他实验成分,其中水的使用量是非常大的。因此将Milli-Q水(电阻率18.2MΩ·cm(25℃),TOC<5ppb)作为激素中雌二醇分析的实例进行分析。这个实验的结果如图2所示,其中MRM色谱图显示Milli-Q®水中不存在雌二醇,确保了分析方法的低检出限,使用标准加入法测得雌二醇浓度为265.40ng/L。
前体离子273m/z和碎片离子255m/z用多反应监测(MRM)ESI+转换。HPLC和MS以及LC-MS/MS的仪器参数以及制备Milli-Q®水所用水源,见图2。
Figure 2. MRM chromatogram (ESI+) of estradiol in a sample and in Milli-Q®water.
可追溯性
水纯化系统的在线监测功能使科学家们确定他们所使用的水是否符合LC-MS分析的要求。但是,当问题产生时,说明LC-MS分析过程中已经出现了污染,找到并消除其来源至关重要,因为污染隐患来源非常多,使用LC-MS实验时收集记录的水质参数的数据可以在特定的日期与污染源联系起来,从而促进水质评估和问题的排查。
而且,在所有临床实验室中,可追溯性都是质量管理体系中的重要需求,能使实验室符合认证,例如,ISO15189:2007标准或CLSI®C3—A4。所以,在这种情况下用电子方式记录水质参数的方法是一种确保高质量认证的解决方案。
可靠性
为了满足LC-MS生物医学实验室的要求,水源必须可靠。所以水纯化系统不仅要生产高质量的实验用水,而且这个质量必须始终如一。为确保水质的一致性,使用在线监测工具。水中的离子含量通过电阻率测量来评估,通常电阻率18.2MΩ·cm(25℃)的水表示不含离子杂质。
为了检测有机污染物程度,可用可氧化总有机碳(TOC)计算;TOC低于5ppb的水(或μg/L)适用于LC-MS实验。因此,要检测水质的稳定性需要连续监测Milli-Q®水质的电阻率和TOC参数。图3显示了Milli-Q®系统提供的水质稳定性在线监测数据。
Figure 3. Levels of Resistivity (MOhm·cm) measured continuously and TOC (ppb) measured every 3 minutes as a function of volume produced by a Milli-Q® water system. Different colors refer to data obtained for three different sets of consumables installed by turns.
结论
超纯水适用并符合LC-MS生物医学分析实验的要求,而且良好的水质对实验的高质量和稳定性至关重要。临床实验室LC-MS实验 可以使用Milli-Q®水净化系统即能符合LC-MS仪器高灵敏度的要求还可以获得可靠和可追溯的分析结果。
References
1. K. S-Y. Leung, B. M-W. Fong, LC–MS/MS in the routine clinical laboratory: has its time come? Analytical and Bioanalytical Chemistry, 406, 2289-2301 (2013).
2. M. Himmelsbach, 10 years of MS instrumental developments--impact on LC-MS/MS in clinical chemistry, J. Chromatogr. B, 883– 884, 3– 17 (2012).
3. A. Khvataeva-Domanov, S. Mabic, Four Ways to Better Water Quality in LC-MS, R&D Magazine, (2015); http://www.rdmag.com/articles/2015/09/four-ways-better-water-quality-lc-ms
4. CLSI®C62-A - Liquid-Chromatography-Mass Spectrometry methods; approved guideline, Johns Hopkins Medical Institutions, First Edition, 5.3.1, 34, (2014); http://shop.clsi.org/chemistry-documents/C62.html
5. Controlling Contamination in UltraPerformance LC?/MS and HPLC/MS Systems, Waters Corporation; http://www.waters.com/webassets/cms/support/docs/715001307d_cntrl_cntm.pdf
6. B. Keller, J. Sui, A.B. Young, R.M. Whittal, Interferences and contaminants encountered in modern mass spectrometry, Anal. Chim. Acta, 627, 71-81 (2008).
7. M. Vogeser, C. Seger, Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory, Clin. Chem. 56, 1234-1244 (2010).
8. Millitrack? e-Solutions, A unique set of data management and monitoring software solutions for water purification systems, MilliporeSigma; www.emdmillipore.com/millitrack-esolutions
- 生物医学光学在netnotes中检测哪个数据库
4月突出贡献榜
推荐主页
最新话题
参与评论
登录后参与评论