全部评论(0条)
热门问答
- 生物医学光学在netnotes中检测哪个数据库
- Femto Science等离子清洗机在生物医学中的应用
Femto Science等离子清洗机在生物医学中的应用
有效的生物和生物医学研究需要对细胞微环境和生物材料特性的特殊控制。等离子体处理系统通过引入官能团对生物材料表面进行清洁、消毒和活化,而不影响其体积。材料表面亲水性或疏水性的增加分别增加细胞的粘附、覆盖和增殖或诱导球体的形成。此外,等离子体处理已被证明可以改善生物相容性和许多应用的抗生物污染特性。因此,等离子体处理被广泛应用于细胞接种、蛋白质吸附、生物材料涂层和植入物表面活化。
Femto Science Plasma→应用→生物医学→免疫分析发展
Femto Science等离子清洗机用于免疫分析开发,以提高设备灵敏度,并实现微流控设备制造。等离子清洗氧化材料表面,引入反应性极性官能团。通过增加固有疏水性材料的亲水性,等离子体清洗可以增强抗原或抗体的固定化[1]。因此,可以将更多的抗原或抗体装载到材料表面,从而提高设备灵敏度[4]。此外,增加表面润湿性可防止设备内形成气穴,使样品和免疫分析受体之间有更多接触[1]。用于提高仪器灵敏度的免疫分析材料包括PDMS、玻璃毛细管、聚苯乙烯纤维和棉纤维。
Femto Science Plasma →应用→生物医学→荧光显微镜样品
等离子体去除有机污染,并将极性基团引入玻璃或石英滑动表面。因此,等离子体会去除荧光杂质,否则会出现混杂伪影。此外,等离子体处理增强了表面涂层的沉积,可用于将单个分子拴在滑动表面上。牛血清白蛋白(BSA)或聚乙二醇(PEG)通常用于在血浆处理后进行单分子研究。注意,等离子体清洗可以去除荧光显微镜中可能导致背景荧光的有机和生物污染物。空气或氧气等离子清洗无法去除有助于背景荧光的无机成分。
Femto Science Plasma →应用→器件制造→芯片上的器官
用等离子处理制成的芯片上器官模型,复制了关键的组织结构、功能和其他生理特征,以更好地探索药物释放、毒理学和疾病在体外的进展。在医学研究中,体内试验往往是不切实际的,动物试验在鉴别有效药物或有毒物质方面可能是无效的。芯片上器官模型提供了一些优势,包括动态机械环境、空间-时间化学梯度、活细胞成像以及从患者来源的诱导多能干细胞(IPSCs)创造组织的潜力。因此,研究人员对药物测试实验有了更多的控制,并有了更多的分析工具。 等离子体处理和改进的微加工技术更容易促进芯片上器官模型的发展。等离子体清洗将反应性官能团引入PDMS器件表面,实现了水密共价键合和亲水性微通道。此外,等离子体处理的PDMS表面具有改善的润湿性,这有利于细胞的吸附,并且有利于细胞的存活、增殖和功能。
使用Femto Science等离子清洁器开发的芯片上器官模型示例:
芯片上牙齿——探索生物材料对活牙髓细胞形态、代谢和功能影响的模型[1] 在气液界面培养的Lung-on-a-chip-Calu-3细胞[2]。
芯片上肌肉-通过神经肌肉接头(NMJ)与骨骼肌相互作用的运动神经元[3]。
用维拉帕米(一种已知的变时性药物)ZL芯片心脏-iPSC衍生的心肌细胞,并进行毒理学分析[4]。
芯片创伤-模仿早期炎症的旁分泌成分[5]
芯片上的膜–人宫内腔、羊膜上皮细胞(AEC)和羊膜间充质细胞(AMC)的羊膜模型[6] 芯片上的肝脏——研究乳腺癌和肝脏(患病与否)之间粒子的动态和空间传输[7] 芯片上肿瘤-验证载药纳米颗粒对大肠肿瘤的LX[8]。
Femto Science Plasma→应用→生物学和生物医学→钛植入物
在牙科和骨科植入物的研究中,等离子处理被用于调整钛和钛合金的表面特性,以改善骨整合。钛具有良好的生物相容性、耐腐蚀性和力学性能,是一种广泛应用的植入生物材料。然而,由于未经处理的钛具有生物惰性,它不能与周围的骨组织形成化学键,从而降低其融入人体的能力。细胞的粘附和增殖受到材料表面性质的强烈影响,包括表面形貌、自由能和润湿性。等离子体处理去除了表面的有机污染,引入了极性官能团,增加了表面自由能和润湿性。结果表明,等离子ZL钛棒具有较高的生化拔出力,组织学检查中骨整合完整。
另外,钛种植体的生物功能化可以通过引入表面涂层来实现,从而进一步增强骨整合。例如,聚(丙烯酸)(PAA)刷已经被移植到钛植入物上以改善细胞粘附。首先,当PGMA环氧基与功能化表面反应形成醚键时,PGMA层共价键合到等离子体处理的钛上。PAA随后被移植到PGMA层,形成具有ZJ细胞和组织反应的刷状表面。
Femto Science Plasma→应用→生物学和生物医学→细胞粘附
细胞粘附在细胞培养和组织工程中起着不可或缺的作用。在自然环境中,细胞粘附分子(cell adhesion molecules,cam)与细胞外基质和邻近细胞结合,为细胞活力、增殖和分化提供结构支持和化学信号。然而,大多数细胞培养材料是惰性的,阻碍了细胞的锚定。等离子体处理将生物活性、亲水性官能团引入细胞培养材料,提高细胞粘附力和细胞活力。
下面你会发现关于不同细胞培养材料的细胞粘附的信息,以及如何使用等离子体处理来增强生物相容性。细胞培养材料影响靶细胞的增殖能力和功能。这些材料提供了决定细胞形态和分化的高度特异的化学和机械线索。最常见的是,细胞培养在等离子体处理聚苯乙烯(组织培养塑料)。虽然TCP能使细胞快速生长和发育,但扁平的细胞形态会对细胞功能产生负面影响,甚至迫使细胞通过非预期的分化途径(例如:神经元形态与胶质细胞)。最近,三维细胞培养材料已经被用来在人工构造中再现自然环境。聚合物细胞支架因其与细胞外基质相似、成本低、化学性质惰性、无毒等优点而被广泛应用。许多聚合物支架是可生物降解的或有其他有趣的特点,有助于他们在这些应用的成功。然而,所有这些材料都是疏水的,对细胞粘附有害。
等离子体处理是开发具有高细胞粘附性和亲水性的生物活性细胞培养材料的重要手段。空气或氧气等离子体通常用于纳米级清洁和引入具有高生物亲和力的官能团(羧基、羟基、胺)。由于没有危险或长时间的湿化学过程,台式等离子清洁器可以在实验室制造出适合细胞播种或涂层的亲水表面。因此,研究人员能够更快更容易地操纵细胞支架的化学性质。这包括引入细胞外基质成分,如纤维连接蛋白,可以进一步增强细胞功能。
聚己内酯(PCL)由于其与天然ECM的相似性和长期无毒的生物降解速率,常被用作细胞支架。PCL有着良好的临床记录,并在一些现有的YL器械中获得了FDA的批准。等离子体处理通常用于直接增加细胞的附着,或制备PCL基底用于表面涂层以提高细胞活性。目前,PCL支架的研究主要集中在骨和软骨的形成上。 细胞和组织:内皮,上皮,骨,脂肪,肾,神经元,皮肤,肝,软骨,前交叉韧带,心脏瓣膜,前列腺,平滑肌,肿瘤模型
工艺气体:空气、氧气、氩气、氮气、二氧化碳
Femto Science Plasma→应用→生物学和生物医学→DNA梳理
DNA梳理是一种用于DNA单分子分析的技术,它为研究人员提供了一个更好地理解复制、转录和单个分子相互作用动力学的机会。虽然DNA测序技术的进步迅速增强了我们解码基因组的能力,但单凭DNA序列并不能完全解释细胞特定的蛋白质组。类似地,整体分析,即在大的群体中平均DNA特征,不能解决单个DNA分子之间的本质差异。为了实现单分子分析,高密度的DNA层被固定并均匀拉伸。通过DNA梳理,可以使用各种荧光成像技术分析高达12Mb的DNA片段。
DNA梳理的等离子体处理
DNA梳理包括固定化、排列和拉伸三个关键步骤,每一个步骤都通过等离子体处理得到增强。等离子体处理去除了纳米级的有机污染物,并在材料表面引入了极性官能团。等离子体处理引入的羟基与硅烷上的烷氧基反应,形成强共价键。反过来,DNA分子在溶液中结合硅烷的乙烯基(-CH=CH2)。因此,表面羟基的有效性直接影响固定在材料表面的DNA分子的密度。此外,键的强度使DNA能够拉伸。
血浆VS食人鱼
最常见的替代等离子体处理DNA梳理的方法是食人鱼清洗,这一过程增加了复杂性和安全隐患。食人鱼是一种硫酸和过氧化氢的混合物,也用于清除基质上的有机残留物,并提供羟基化表面。由于食人鱼固有的危险性,它的使用往往局限于洁净室和训练有素的专业人员。此外,台式等离子清洗机比化学处理更通用,使研究人员能够在处理后快速硅烷化其基质。这可能导致更密集的硅烷层适合DNA梳理。
Femto Science Plasma→应用→改变表面化学→组织培养塑料(聚苯乙烯)
廉价,一次性和透明,等离子体处理聚苯乙烯,或组织培养塑料(TCP),是最广泛使用的细胞培养材料,不仅因为它的上述品质,而且因为它的生物亲和力。哺乳动物细胞具有锚定依赖性,依赖于它们与其他细胞、细胞外基质(ECM)和/或物质基质的连接来控制重要功能,如细胞内和细胞外通讯、凋亡(细胞程序性死亡)、形态、功能和分化。跨膜蛋白、整合素和细胞粘附分子(CAM)锚定在周围环境中,并通过细胞骨架发送信号,驱动这些过程[1]。为了在组织培养中产生功能和形态上精确的细胞群,平台必须模拟产生特定细胞类型的生物环境。未经处理的聚苯乙烯表面主要由疏水性苯基组成,不存在于体内,不利于细胞锚定。等离子体处理用亲水性羰基、羟基或含胺官能团(取决于工艺气体)取代这些苯基,这些官能团更适合细胞粘附[2]。此外,带负电(空气或氧气)和亲水性的组织培养塑料表面增加了细胞培养基成分的非特异性吸附,并使随后的涂层进一步促进细胞粘附。
Femto Science Plasma→应用→改变表面化学→APTES
(3-氨基丙基)三乙氧基硅烷(APTES)是一种氨基硅烷,最初是作为亲和层析的吸附剂开发的,现已发展成为细胞研究和微流控器件制造中改善表面化学的通用工具。在等离子清洗之后,处理过的材料的表面具有高的自由能,没有污染物,并且被亲水性官能团修饰。在很长一段时间内,这种高能状态会随着分子的重新排列而减弱,重新回到主体中,并ZZ呈现出较低的能量结构。随后用APTE处理交换亲水性、胺携带分子的表面官能团。这使得长期的研究,其中表面亲水性的处理材料是保持。 APTES表面功能化的两个主要应用是热塑性微流控器件的制备和适合细胞研究的微环境的开发。聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)等热塑性塑料是微流控器件的理想材料,因为它们可以通过热成型以高速度和低成本生产。在等离子体清洗和APTES处理后,热塑性塑料被粘合到PDMS上。这些微流控器件保持其亲水性多年。在细胞研究中,APTES是一个基本的表面基团,可以用来引入必要的细胞外基质成分,如胶原蛋白、戊二醛和细胞特异性蛋白质。
Femto Science Plasma→应用→生物学和生物医学→微流控细胞培养
微流控设备正迅速成为比宏观培养容器(培养皿、烧瓶和孔板)更为有利的细胞培养平台,有着广泛的应用前景。二维细胞培养得益于一个庞大的资源库:测量pH、CO2、O2等的标准协议、材料和方法。然而,已经观察到,生长在平坦平台上的细胞在形态、表型和细胞-细胞/细胞外基质(ECM)相互作用方面与它们的生物对应物有显著差异。从这些培养平台得到的结果可能与真实的生物系统有很大的不同,这使得一些结果不适用。 相比之下,微流控设备可以通过定制生长因子、机械和化学刺激等来模拟生理或病理微环境,以匹配正在培养的特定细胞群。此外,这些设备需要较少的细胞和试剂。因此,微流控技术在组织工程、干细胞研究、药物筛选等领域有着广泛的应用。
Femto Science Plasma→应用→生物学与生物医学→神经元形态与功能
神经元的形态、增殖和功能受一个复杂的化学和生物物理信号系统的调节,这个系统被称为神经元生态位。试图模拟神经元活动、开发功能性组织或测试药物传递机制的研究人员需要重现这种高度特定的环境,以获得准确的结果。过去,神经学研究是在二维环境中进行的,这种环境通过诱导扁平的形态、功能减弱和胶质细胞分化的趋势来限制电位。目前,研究人员正在利用定制的PDMS结构来产生具有神经元特定几何形状和化学信号的微环境。例如,在等离子体处理后用聚鸟氨酸和层粘连蛋白对PDMS表面进行功能化,使研究人员能够构建复杂的、单向的神经元网络。等离子体处理使材料表面的功能化能够ZJ地模拟神经元生态位。
- 超纯水在LC-MS生物医学分析中的应用
LC-MS的强大功能已经得到了生物医学实验室的认可。1,2现在的LC-MS仪器已经从研究到常规临床实验室范围广泛使用,并有效应用于以下领域:
· ZL药物监测 - 测量血浆,血液或组织中的药物(例如免疫YZ剂)
· 滥用药物测试 - 测量在尿液或唾液中的药物(例如哌替啶,等等)
· 激素测试 - 测量血清或血浆中的激素(例如类固醇或甲状腺激素)
· 生物胺分析 - 测量血浆或尿液中的生物胺(如儿茶酚胺)
· 新生儿筛查 - 通过使用LC-MS水平监测氨基酸和酰基肉碱检测可ZL的疾病
LC-MS仪器相对于其他分析工具具有很强的吸引力,原因在于该技术能够以非常高的灵敏度同时测量多种复杂分析物。此外,速度和信任也是患者护理的关键因素,同时成功的LC-MS生物医学分析具有高度灵敏度,可追溯性强和数据可靠的特性。因此,对于生物医学用LC-MS工作流程中的试剂水及其水在LC-MS成功分析实践中的作用将通过以下三个方面进行介绍。
灵敏度
超纯水被广泛用于LC-MS流程的各个环节(图1),所以是导致实验数据鬼峰,基线噪音和高MS背景等这些原因的主要污染源。同时也会使仪器或方法的灵敏度下降,使一些低浓度分析变的困难3。为了避免干扰,确保检测到的分析物是来自样品,而非来自实验用水4,实验过程需要使用高质量的超纯水,避免数据偏差和再次污染5。
Figure 1. The role of water in the LC-MS laboratory
超痕量分析是LC-MS生物医学分析中的一个应用领域,在激素检测中,相较于其他实验成分,其中水的使用量是非常大的。因此将Milli-Q水(电阻率18.2MΩ·cm(25℃),TOC<5ppb)作为激素中雌二醇分析的实例进行分析。这个实验的结果如图2所示,其中MRM色谱图显示Milli-Q®水中不存在雌二醇,确保了分析方法的低检出限,使用标准加入法测得雌二醇浓度为265.40ng/L。
前体离子273m/z和碎片离子255m/z用多反应监测(MRM)ESI+转换。HPLC和MS以及LC-MS/MS的仪器参数以及制备Milli-Q®水所用水源,见图2。
Figure 2. MRM chromatogram (ESI+) of estradiol in a sample and in Milli-Q®water.
可追溯性
水纯化系统的在线监测功能使科学家们确定他们所使用的水是否符合LC-MS分析的要求。但是,当问题产生时,说明LC-MS分析过程中已经出现了污染,找到并消除其来源至关重要,因为污染隐患来源非常多,使用LC-MS实验时收集记录的水质参数的数据可以在特定的日期与污染源联系起来,从而促进水质评估和问题的排查。
而且,在所有临床实验室中,可追溯性都是质量管理体系中的重要需求,能使实验室符合认证,例如,ISO15189:2007标准或CLSI®C3—A4。所以,在这种情况下用电子方式记录水质参数的方法是一种确保高质量认证的解决方案。
可靠性
为了满足LC-MS生物医学实验室的要求,水源必须可靠。所以水纯化系统不仅要生产高质量的实验用水,而且这个质量必须始终如一。为确保水质的一致性,使用在线监测工具。水中的离子含量通过电阻率测量来评估,通常电阻率18.2MΩ·cm(25℃)的水表示不含离子杂质。
为了检测有机污染物程度,可用可氧化总有机碳(TOC)计算;TOC低于5ppb的水(或μg/L)适用于LC-MS实验。因此,要检测水质的稳定性需要连续监测Milli-Q®水质的电阻率和TOC参数。图3显示了Milli-Q®系统提供的水质稳定性在线监测数据。
Figure 3. Levels of Resistivity (MOhm·cm) measured continuously and TOC (ppb) measured every 3 minutes as a function of volume produced by a Milli-Q® water system. Different colors refer to data obtained for three different sets of consumables installed by turns.
结论
超纯水适用并符合LC-MS生物医学分析实验的要求,而且良好的水质对实验的高质量和稳定性至关重要。临床实验室LC-MS实验 可以使用Milli-Q®水净化系统即能符合LC-MS仪器高灵敏度的要求还可以获得可靠和可追溯的分析结果。
References
1. K. S-Y. Leung, B. M-W. Fong, LC–MS/MS in the routine clinical laboratory: has its time come? Analytical and Bioanalytical Chemistry, 406, 2289-2301 (2013).
2. M. Himmelsbach, 10 years of MS instrumental developments--impact on LC-MS/MS in clinical chemistry, J. Chromatogr. B, 883– 884, 3– 17 (2012).
3. A. Khvataeva-Domanov, S. Mabic, Four Ways to Better Water Quality in LC-MS, R&D Magazine, (2015); http://www.rdmag.com/articles/2015/09/four-ways-better-water-quality-lc-ms
4. CLSI®C62-A - Liquid-Chromatography-Mass Spectrometry methods; approved guideline, Johns Hopkins Medical Institutions, First Edition, 5.3.1, 34, (2014); http://shop.clsi.org/chemistry-documents/C62.html
5. Controlling Contamination in UltraPerformance LC?/MS and HPLC/MS Systems, Waters Corporation; http://www.waters.com/webassets/cms/support/docs/715001307d_cntrl_cntm.pdf
6. B. Keller, J. Sui, A.B. Young, R.M. Whittal, Interferences and contaminants encountered in modern mass spectrometry, Anal. Chim. Acta, 627, 71-81 (2008).
7. M. Vogeser, C. Seger, Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory, Clin. Chem. 56, 1234-1244 (2010).
8. Millitrack? e-Solutions, A unique set of data management and monitoring software solutions for water purification systems, MilliporeSigma; www.emdmillipore.com/millitrack-esolutions
- 现在的光学在生物医学方面的Z前沿的研究与应用有哪些?
现在的光学在生物医学方面的Z前沿的研究与应用有哪些?
- lims实验室管理系统 数据库在哪个文件
- 百特光学颗粒计数器在油田回注水检测中的应用
在油田开发生产过程中,回注水是维持地层压力、保持油田高产稳产的重要手段。注入水中颗粒易引起油层污染和堵塞、降低油层吸水能力,其粒径的分布是衡量注水水质的重要指标,通常悬浮物粒径越小水质越好。在现行的《SY/T 5329-2012 碎屑岩油藏注水水质指标及分析方法》中,规定了两类仪器可以检测悬浮物粒径,一类是激光粒度分析仪,另一类是颗粒计数器。激光粒度仪适合分析颗粒浓度较高的浑浊水样品,颗粒计数器适合分析颗粒浓度较低的水样品。颗粒计数器又分电阻法颗粒计数器和光阻法颗粒计数器两种。
丹东百特研制的BettersizeC400光阻法颗粒计数器,具有检测回注水中悬浮物颗粒大小、个数和粒度分布的能力。它采用国际先进的光阻与散射结合技术,配合高灵敏度检测器和高速信号采集与传输系统,可准确的分析0.5-400μm之间的颗粒大小、个数和粒度分布。与电阻法颗粒计数器相比,光阻法的优势是可以直接测试水样,无需配电解质溶液,也不用更换小孔管。
光阻法颗粒计数器的原理是一束片状激光始终照射玻璃毛细管测量区,用柱塞泵使水样流过毛细管测量区,当水样中有颗粒通过测量区时,因为颗粒的遮挡和散射将使透过测量区的光产生与颗粒大小成正比的衰减信号和散射信号,通过传感器接收这些信号,再用专门的分析软件对这些信号进行处理,从而得到颗粒大小、个数和粒度分布信息。
BettersizeC400具有量程宽、灵敏度高、操作简便、结果准确、分析速度快等特点,特别适合测量这种低浓度的回注水样。我们用BettersizeC400对三种回注水样品进行分析,得到的粒径典型值D10、D50和D90,同时得到粒度分布,如下表和下图所示
依据SY/T 5329-2012标准要求,一般用D50值来判断回注水水质好坏,D50越小回注水水质越好。从上表和图中可以看到,3#回注水样的水质最 好,1#回注水样的水质最差。由此可见,Bettersize C400光学颗粒计数器能很好的检测低浓度油田回注水中的颗粒大小、和粒度分布,可在油田回注水质处理与检测方面发挥重要作用。
- 怎么在用友软件中修改数据库?
- 全站仪光学对中和激光对中哪个精度高
- 生物医学传感与检测技术有哪些特殊要求
- 纳米材料在生物医学上有什么应用和优势
- Bruker三维光学轮廓仪在光学应用
光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证终元器件的性能指标,是光学元件加工领域的关键问题之一。
光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响终器件的性能。
此外,各种新型光学元件也需要检测其表面轮廓,比如非球面,衍射光学元件,微透镜阵列等。除了终光学元件的加工精度以外,各种光学元件加工工艺也需要检测中间过程的三维形貌以保证终产品的精度,包括注塑、模压的模具,光学图案转印时的掩膜版,刻蚀过程的图案深度、宽度等。
布鲁克的三维光学显微镜配备专利的双光源技术,同时实现白光干涉和相移干涉成像,适用于各种不同光学样品、模具的三维形貌测量。在光学加工领域得到广泛应用。
· 设备可以用于光学元件表面质量检测,可以通过表面粗糙度、表面斜率分布等判断光学元件整体散射率,也可以统计局部的各种缺陷。
· 设备还可以用于各种光学元件的面型分析,除了手动分析以外,软件还提供了包括Zernike多项式拟合、非球面分析等功能。
· 由于该设备能准确测量和分析光学元件,在多种先进光学元件中得到广泛应用,包括光栅、菲涅尔透镜和二元光学元件等衍射光学元件,以及微透镜阵列等。
Bruker三维光学轮廓仪系列(Bruker GT-X、Bruker ContourX-200、Bruker ContourX-500)以及bruker其他产品在上海尔迪仪器科技有限公司均有销售。价格优惠,响应迅速!
欢迎广大客户前来致电咨询!上海尔迪仪器科技有限公司是一家从事仪器设备销售、技术服务与工艺开发的创新公司,产品齐全,为您提供一站式采购服务。
- 纳米生物医学材料
- 如题 麻烦解释一下
- 生物医学中的电位分析法应注意哪些
- 数据库监控软件哪个比较好用
- 布鲁克三维光学轮廓仪在光学领域应用
光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证最终元器件的性能指标,是光学元件加工领域的关键问题之一。
光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响最终器件的性能。此外,各种新型光学元件也需要检测其表面轮廓,比如非球面,衍射光学元件,微透镜阵列等。
除了最终光学元件的加工精度以外,各种光学元件加工工艺也需要检测中间过程的三维形貌以保证最终产品的精度,包括注塑、模压的模具,光学图案转印时的掩膜版,刻蚀过程的图案深度、宽度等。
布鲁克的三维光学显微镜配备双光源技术,同时实现白光干涉和相移干涉成像,适用于各种不同光学样品、模具的三维形貌测量。在光学加工领域得到广泛应用。
· 设备可以用于光学元件表面质量检测,可以通过表面粗糙度、表面斜率分布等判断光学元件整体散射率,也可以统计局部的各种缺陷。
· 设备还可以用于各种光学元件的面型分析,除了手动分析以外,软件还提供了包括Zernike多项式拟合、非球面分析等功能。
· 由于该设备能准确测量和分析光学元件,在多种先进光学元件中得到广泛应用,包括光栅、菲涅尔透镜和二元光学元件等衍射光学元件,以及微透镜阵列等。
bruker三维光学轮廓仪在尔迪仪器有售,如有需要可联系上海尔迪仪器科技有限公司!拨打电话021-61552797!021-61552797!
- 光学经纬仪对中
- 如题,就是在安装经纬仪的过程中, 首先是要对中三脚架下面的已知固定点。在操作过程中,若先将仪器对中固定点,在后面的粗平经纬仪中,会造成已经对中的固定点发生偏移,个人感觉经纬仪的使用过程中。惟独这个对中相当麻烦。请问下知情的朋友,如何才能做到Z... 如题,就是在安装经纬仪的过程中, 首先是要对中三脚架下面的已知固定点。在操作过程中,若先将仪器对中固定点,在后面的粗平经纬仪中,会造成已经对中的固定点发生偏移,个人感觉经纬仪的使用过程中。惟独这个对中相当麻烦。请问下知情的朋友,如何才能做到Z好的对中正平? 展开
- 小蜜蜂财务软件的数据库bac用的是哪个数据库
- 光纤光学中光学特性中的NA、MFD是什么意思
- 用友软件中在数据库中的子表和主表的区别
- SCI的论文收录在哪个数据库
参与评论
登录后参与评论