仪器网(yiqi.com)欢迎您!

| 注册
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

抗体药物偶联物(ADC)的DAR分析表征

东曹(上海)生物科技有限公司 2020-11-24 11:28:11 755  浏览
  • 抗体-药物偶联物(ADC)作为一种生物ZL候选药物是近年来的研究热点。ADC药物是将单克隆抗体的肿瘤特异性和靶向性与GX的小分子药物的细胞毒性结合成一个新的药物分子,从而形成有效的kang癌ZL剂。这些分子由三部分组成:单克隆抗体、稳定的连接物以及细胞毒性小分子药物。

    ADC药物的药效和清除率都与药物抗体偶联比(DAR)值有关,因此在药物开发过程中必须对其精确分析。尺寸排阻色谱法和疏水色谱法是在天然生理条件下检测DAR的两种最常用的方法。

    在本应用中,我们通过SEC-MS和HIC-UV法来对一个半胱氨酸偶联的ADC药物模拟物进行分析。该模拟物是由LC-SMCC交联剂将丹磺酰基萤光团共价键合到IgG1-mAb上,形成一个载药量不同(0-8)的抗体混合物。

    图1. 半胱氨酸偶联的ADC模拟物

    图2. 半胱氨酸偶联的ADC的异质性

    实验部分

    在SEC-MS方法中,我们选用TSKgel SuperSW3000尺寸排阻色谱柱。将ADC注入该色谱柱中,HPLC系统与质谱相连,用于检测DAR谱图。从谱图中观察到,每个主峰之间的分子量差异为1336 Da,对应两个丹磺酰基荧光团分子的分子量。SEC/MS分析表明,平均DAR为3.9 。

    图3. ADC模拟物的SEC/MS谱图

    然后,使用疏水色谱柱TSKgel Butyl-NPR和UV检测,来确认DAR分布情况。mAb抗体结合的药物分子数越多,ADC的疏水性越大,在HIC固定相上的保留时间更长,载药量不同的组分便可得到分离。从DAR谱图中可以看到,DAR=0-8的各峰之间分离情况很好。

    图4. ADC模拟物的HIC-UV谱图

    结果与讨论

    SEC-MS和HIC-UV是有效表征ADC的DAR谱图的两种方法。在TSKgel SuperSW3000色谱柱上,使用了质谱兼容的流动相,通过高分辨率ESI-MS检测,验证药物模拟物中ADC组分的分子量。

    HIC-UV方法中,使用TSKgel Butyl-NPR色谱柱对样品中各种抗体-载荷的ADC异构体进行疏水性分析,进一步确认其DAR分布。结合这两种分析方法,可以有效验证ADC生物大分子的DAR谱图。

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

抗体药物偶联物(ADC)的DAR分析表征

抗体-药物偶联物(ADC)作为一种生物ZL候选药物是近年来的研究热点。ADC药物是将单克隆抗体的肿瘤特异性和靶向性与GX的小分子药物的细胞毒性结合成一个新的药物分子,从而形成有效的kang癌ZL剂。这些分子由三部分组成:单克隆抗体、稳定的连接物以及细胞毒性小分子药物。

ADC药物的药效和清除率都与药物抗体偶联比(DAR)值有关,因此在药物开发过程中必须对其精确分析。尺寸排阻色谱法和疏水色谱法是在天然生理条件下检测DAR的两种最常用的方法。

在本应用中,我们通过SEC-MS和HIC-UV法来对一个半胱氨酸偶联的ADC药物模拟物进行分析。该模拟物是由LC-SMCC交联剂将丹磺酰基萤光团共价键合到IgG1-mAb上,形成一个载药量不同(0-8)的抗体混合物。

图1. 半胱氨酸偶联的ADC模拟物

图2. 半胱氨酸偶联的ADC的异质性

实验部分

在SEC-MS方法中,我们选用TSKgel SuperSW3000尺寸排阻色谱柱。将ADC注入该色谱柱中,HPLC系统与质谱相连,用于检测DAR谱图。从谱图中观察到,每个主峰之间的分子量差异为1336 Da,对应两个丹磺酰基荧光团分子的分子量。SEC/MS分析表明,平均DAR为3.9 。

图3. ADC模拟物的SEC/MS谱图

然后,使用疏水色谱柱TSKgel Butyl-NPR和UV检测,来确认DAR分布情况。mAb抗体结合的药物分子数越多,ADC的疏水性越大,在HIC固定相上的保留时间更长,载药量不同的组分便可得到分离。从DAR谱图中可以看到,DAR=0-8的各峰之间分离情况很好。

图4. ADC模拟物的HIC-UV谱图

结果与讨论

SEC-MS和HIC-UV是有效表征ADC的DAR谱图的两种方法。在TSKgel SuperSW3000色谱柱上,使用了质谱兼容的流动相,通过高分辨率ESI-MS检测,验证药物模拟物中ADC组分的分子量。

HIC-UV方法中,使用TSKgel Butyl-NPR色谱柱对样品中各种抗体-载荷的ADC异构体进行疏水性分析,进一步确认其DAR分布。结合这两种分析方法,可以有效验证ADC生物大分子的DAR谱图。

2020-11-24 11:28:11 755 0
怎么表征量子点上偶联的dna数量
 
2018-11-13 02:16:36 269 0
会议预告 | ADC药物质量控制与表征网络研讨会



2023-06-16 15:04:19 75 0
Orbitrap高分辨质谱助力抗病毒单克隆抗体药物的发现和表征

新型冠状病毒(2019-nCoV)肺炎疫情来势汹汹,牵动着每一个人的心,在这没有硝烟的抗疫战场上,ZL药物是白衣天使手中的武器。我们整理了基于Orbitrap超高分辨质谱在抗病毒单克隆抗体药物中的应用,谨以此文致敬白衣天使和深耕医学研究的学者。

得益于医药科研工作者的努力,很多药物已经用于新冠肺炎的ZL。比如ZL性新冠特免血浆制品投入临床,接受ZL的10余名危重病人ZD指标全面向好,给危重病人提供了一种很好的ZL方案。在血浆制品中,只有针对病毒表面蛋白质的抗体才可能产生抗病毒的效果,即针对病毒的中和抗体。而大部分抗体缺乏抗病毒效应,他们可能带来细胞因子风暴的副作用。此外血浆制品的另一个缺点是难以量产。因此,鉴定出的中和抗体可以用于疫苗和单克隆抗体药物的开发,弥补血浆制品的不足


如何在多克隆抗体中找到抗病毒作用的中和抗体?小编收集了基于Orbitrap高分辨质谱方法鉴定血清中单克隆抗体的相关文献,包括蛋白质组学的方法,蛋白质从头测序(De novo测序)、Top-down(自上而下)和Middle-down(自中而下)质谱技术。此外本文还简述了后续单克隆抗体初期研发和生产质控中基于Orbitrap高分辨质谱的全面、深入表征的解决方案。希望对医药科研工作者有所帮助。


方法1 蛋白质组学方法直接鉴定血清中单克隆抗体,应用于单克隆抗体药物的研发


Bottom-up(自下而上)蛋白质组学即先将蛋白酶解成肽段,然后通过色谱分离肽段混合物,再用质谱技术将肽段碎裂,根据碎裂谱图的离子峰信息进行数据库搜索来鉴定肽段,Z后将鉴定的肽段进行组装、重新归并为蛋白。


本文提供了一种结合蛋白质组学和高通量测序技术(NGS)的方法直接从免疫动物血清的外周多克隆抗体中鉴定抗原特异性的单克隆抗体的方法。

技术路线:

基于赛默飞 Orbitrap高分辨质谱仪的蛋白质组学技术进行免疫动物血清中单克隆抗体的鉴定(实验路线见下图)。免疫动物的血清用proteinA或G进行抗体亲和纯化和抗原亲和纯化,纯化后的多克隆抗体分别用多种酶酶切成肽段,接下来用nanoLC-Orbitrap HRMS分析。此外用高通量测序技术对免疫动物B细胞测序获得免疫球蛋白可变区(V-region)的序列,从而得到相对应的蛋白质数据库。质谱数据通过SEQUEST搜该数据库得到可变区氨基酸序列。接着在单一开放阅读框抗体表达平台合成和克隆抗体的重链和轻链。重组单克隆抗体在重链和轻链的基质中排列组合表达,与原多克隆抗体混合物的特异性和活性进行比较从而筛选出高活性的单克隆抗体。本文提供了一种有效分离病毒中中和抗体的方法,用于抗病毒的ZL。并且,它促进我们更加深入理解体液免疫反应。

技术路线图


方法2 蛋白质De novo测序用于单克隆抗体的鉴定,应用于单克隆抗体药物的研发


蛋白质De novo测序:将蛋白分别用多种蛋白酶酶解成肽段,然后通过色谱分离肽段混合物,再用质谱技术将肽段碎裂,直接从碎裂谱图来推断多肽序列,再推断出蛋白序列。可以解决未知序列的蛋白质分析。


本文介绍了一种新利用蛋白质De novo测序的抗体发现的方法,这种方法只需要血清抗体,而不需要对遗传物质进行高通量测序。

技术路线:

基于赛默飞 LTQ-Orbitrap高分辨质谱仪对巨细胞病毒感染人体的多克隆抗体从头测序得到单克隆抗体(实验路线见下图)。巨细胞病毒感染人体后产生多克隆抗体,多克隆抗体用proteinA进行亲和纯化和糖蛋白B抗原亲和纯化富集,用pH 3的洗脱液洗脱,再用离子交换色谱对高丰度的抗体进一步纯化,分别用多种酶对纯化的抗体进行胶内酶切成肽段,接下来用nanoLC-Orbitrap HRMS分析。对抗体MS/MS数据De novo测序分析,再结合分子量的信息筛选出可能的抗体序列组合,再在哺乳动物细胞中表达这些抗体,然后用ELISA实验对重组单克隆抗体进行功能验证。

技术路线图


方法3 Top-down和Middle-down质谱技术用于单克隆抗体的鉴定和序列确证,

应用于单克隆抗体药物的研发和确保抗体药物质量


Top-down质谱技术:蛋白无需酶解,通过完整蛋白质的质量及其碎裂谱图信息可以实现真正意义上的蛋白质鉴定,能保留多种翻译后修饰之间的关联信息。Middle-down质谱技术:蛋白用某些生物酶酶解,得到较长的肽段,对长肽段进行质谱分析,降低了Top-down的难度。


本文利用Top-down或Middle-down质谱技术可以解决高通量测序技术和Bottom-up蛋白质组学技术只能获得单抗轻链和重链的单链信息,而不知道轻链和重链是如何配对的问题。克服了单克隆抗体药物的发现和开发中重链和轻链配对确定的挑战。

技术路线:

基于赛默飞 Orbitrap高分辨质谱仪的Top-down和Middle-down技术对IgG1 Fab段进行序列鉴定(实验路线见下图)。IgG1单抗用GingisKHAN蛋白酶酶切得到单抗Fab和Fc片段,用RP-LC C4色谱柱分离,赛默飞 Orbitrap高分辨质谱仪对Fab进行ETD直接碎裂,从而得到配对的轻链和重链信息。该方法可以用于对来自复杂抗体混合物中的单抗疫苗和药物的发现。

技术路线图


方法4 单克隆抗体药物全表征,确保单克隆抗体药物质量


基于Q Exactive高分辨质谱仪平台和 BioPharma Finder 数据分析软件,实现了单克隆抗体药物简单、快速的完整分子量,亚基分子量,肽图,二硫键和糖型的分析(实验路线见下图),为单克隆抗体药物的初期研发和生产质控提供了GX、可靠的分析测试方法,赛默飞具有完整、全面的生物制药表征解决方案(Thermo AN-21919 & Thermo PN-64805等)。基于Orbitrap高分辨质谱仪的肽图和分子量分析,主要避免抗体氨基酸序列突变或丢失的克隆,确定蛋白分子的正确性。二硫键分析确保抗体空间结构的正确,防止二硫键错配影响单克隆抗体的活性。有的单克隆抗体中糖基化对活性非常敏感,糖型分析可避免一些糖型较差的克隆。


综上所述,基于Orbitrap高分辨质谱的蛋白质组学、蛋白质De novo测序、Top-down和Middle-down质谱技术可以用于单克隆抗体药物的发现和鉴定。以及在后续单克隆抗体初期研发和生产质控中,Orbitrap高分辨质谱平台可以帮助企业对其进行深入、全面的表征,从而保证抗体药物的有效性和安全性。


扫描以下二维码

更多生物制药色谱与质谱解决方案

扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱ZG”公众hao,了解更多资讯+





2020-02-27 09:38:29 997 0
蔡司激光共聚焦显微镜-微纳器件的表征分析

对微纳器件进行表征时,常关注的便是器件的表面形貌和三维尺寸信息,比如粗糙度、深度、体积等,这些都是评价微纳加工工艺的重要指标。然而,在进行表面三维的分析工作中,我们可能常遇到这样的苦恼:

  光学明场无法直接定位到亚微米级缺陷结构!

  样品结构太复杂,微弱信号无法捕获,难以准确测量尺度信息!

  三维接触式测量经常会损伤柔软样品,导致测试结果不准确!

  今天,友硕小编将从下面几个角度来看看蔡司激光共聚焦显微镜如何帮助你更好地解决这些问题。

  失效分析:多尺度多维度原位分析!

  器件表面往往存在一些特殊的结构或缺陷,比如亚微米尺度的划痕,这些特征难以在光学明场下被直接观察到。C-DIC(圆微分干涉)观察模式可以让样品表面亚微米尺度的微小起伏都可以呈现出浮雕效果,帮助我们快速定位并开展下一步的分析工作。

  ▲ 不同观察方式下晶圆表面缺陷

  在定位到感兴趣区域后,可以直接切换到共聚焦模式,进行表面三维形貌扫描,并进行尺寸测量及分析,无需转移样品即可完成样品多尺度多维度的表征。

  ▲共聚焦三维图像及深度测量

  对于某些样品,暗场和荧光模式也是一种很好定位方法,表面起伏的结构在暗场下尤其明显,如蓝宝石这类能发荧光的晶圆,利用荧光成像也能帮助我们快速地定位到失效结构。甚至,共聚焦还可以和电镜或者双束电镜(FIB)(点击查看)实现原位关联,在共聚焦显微镜下进行定位后转移样品到电镜下进行更高分辨的表征分析。

  深硅刻蚀:结构深,信号弱,蔡司激光共聚焦显微镜有办法!

  深硅刻蚀的样品通常为窄而深的沟壑结构。接触式测量(如台阶仪)无法接触到沟壑底部测得信息,而由于结构特殊造成了反射光信号损失,常规白光干涉或者显微明场无法捕获底面的微弱信号。因此,不得不对样品进行裂片分析,这不仅破坏了样品,而且还使分析流程复杂化。

  西湖大学张先锋老师用蔡司激光共聚焦显微镜对深163.905 μm,宽3.734μm的刻蚀坑进行成像,高灵敏探测器、大功率激光及Z Brightness Correction技术可以帮助成功检测到底部的微弱信号,完成大深宽比(近50:1)样品的三维形貌表征与测量,轻松实现无损检测分析。


2023-02-01 14:56:12 135 0
激光粒度仪表征纳米炭黑粒度分布的应用案例分析

纳米炭黑作为一种非常重要的功能材料已在橡胶、塑料行业得到广泛应用,其粒径和粒径分布直接影响产品的工艺性能和使用性能。目前,表征炭黑粒度的方法很多,比如筛分法、电镜法、沉降法、激光法等。筛分法设备简单,结果直观,但筛孔尺寸会随使用时间和使用频率而变化,即便筛网定期会经过校准,但要克服尺寸的这种变化较为困难。但该法测试样品量大,代表性强,在炭黑行业仍作为炭黑出厂指标在产品合格证中列示。电镜法分辨率高,结果直观,容易得到一次粒径结果,但由于炭黑是不易分散的团聚体,得到的粒径分析结果难以代表样品在实际应用时的分散程度及粒度分布状态,也无法指导纳米级炭黑发挥其应有的性能优势。此时,用离心沉降法、激光衍射分析法测得的包含有二次粒径信息的粒度分布数据就更具有实际指导意义。

圆盘式离心沉降法测量炭黑的尺寸分布是经典的炭黑粒径分布测试方法,有ISO标准可供使用,但其测量超细颗粒粒度及其粒度分布还存在测量时间过长以及数据处理方法复杂等缺点。激光粒度仪测试速度快、动态范围宽,结果信息量大、重现性好,测试炭黑的粒度及粒度分布有其自身的显著优势。

对于难分散的样品,制样方法、测试条件不同,结果会有差异。模拟该样品在实际应用中的颗粒分散程度,本文初步设计了3种分散制样方法,对同一种炭黑的粒度测试结果进行了对比浅析。

1 实验部分

1.1 主要样品和材料

炭黑N234,丙酮、无水乙醇(分析纯),去离子水

1.2 主要设备和仪器

Topsizer Plus激光粒度分析仪(适配循环进样系统SCF-108和SCF-126B)

以及PIP8.1颗粒图像处理仪

以上仪器均为珠海欧美克仪器公司生产;

Quanta 250 FEG场发射环境扫描电子显微镜,美国FEI公司生产;信仪JY96-II超声波细胞粉碎机。

1.3样品制备测试方案

A法分段超声:称取样品,加入微量乙醇浸润样品,水浴超声3min;缓慢加入曲拉通溶液,探头式超声分散10min;静置恢复室温后取上层液,再次水浴超声3min,静置至室温。

B法丙酮分散:取适量样品,加入丙酮,搅拌,采用探头式超声分散15min。

C法乙醇分散:取适量样品,加入无水乙醇,搅拌,采用探头式超声分散15min。

2 结果与讨论

不同分散方法对炭黑样品进行测试的结果如表1和图1-图3所示。

表1 不同分散方法的结果对比

图1 分段超声法粒度分布图

图2 丙酮分散的粒度分布图

图3乙醇分散的粒度分布图

可以看出,C法的整体分散效果要更好。这是否符合实际情况呢?我们进一步结合电镜和显微镜的检测结果来综合分析,如图6-8所示。

图6 乙醇分散炭黑显微图像                 

图7乙醇分散炭黑电镜图像

图8 乙醇分散炭黑样品电镜下的高倍图像

对于纳米级的炭黑颗粒,由于颗粒非常小,颗粒的表面能很大,细小的炭黑颗粒之间容易由于相互作用力而结合在一起,导致颗粒之间发生团聚,形成更大的二次粒径。通常我们把单个的细小炭黑颗粒的粒径叫做炭黑的一次粒径,也叫原生粒径,而把发生团聚后形成的二次炭黑颗粒粒径叫做炭黑的二次粒径,呈现的形态称为炭黑的聚集体。由于电镜的分辨率极高,可以观测到炭黑的一次粒径。从电镜结果可以看出,样品的一次粒径大多在30-40nm,少部分在20nm,极少部分在100nm(图8),当然也有捕抓到粒径大于1微米的粒子(图7)。 从图6中同样可见少量粒径大于1μm的粒子均匀散落在显微图像中。综上,采用C法分散制备的纳米炭黑样品,激光粒度仪、电镜和颗粒显微图像检测结果一致性较好;聚集颗粒得到了大程度的分散,该粒度分布中包含了主要的一次粒径信息,也有极少量二次粒径的信息。如下:

采用C法,两次取样的各4条记录的统计结果如下:

可见结果重复性、再现性好,分散方法稳健,测试结果稳定。

3 结论

用Topsizer Plus激光粒度仪测试炭黑的粒径分布,得到的是炭黑包含有二次粒径信息的粒度分布,能代表炭黑在实际应用中的颗粒分散状态。激光衍射法表征炭黑粒度及粒度分布对相关研究及实际应用都具有重要的意义。


2020-11-20 14:59:45 625 0
偶联的多肽冻干和不偶联的多肽冻干有区别吗
 
2017-05-08 08:26:55 195 1
Webinar|药物颗粒形貌及粒径表征分析

Webinar

药物颗粒形貌及粒径表征分析


扫描电镜作为新药研发的“新工具”越来越受到药企关注。SEM 在制药行业有着广泛的应用潜力,可对一系列有机和无机成分进行微观结构、表面形貌和化学性质分析。


为了深入的展开医药行业的学习交流,复纳科学仪器(上海)有限公司(以下简称“复纳科技”)拟联合明捷医药展开系列线上研讨会,分别围绕“药包材相容性研究与表征”、“药物颗粒形貌及粒径表征分析”、“处 方前及处 方开发”这个三大主题展开,第二场会议聚焦在“药物颗粒形貌及粒径表征分析”。


会议时间:2023年2月28日 14:00-16:00

会议组织机构:

主办方:复纳科学仪器(上海)有限公司

协办方:明捷医药(药明康德控股子公司)



会议议程


特邀嘉宾:明捷医药 孙仲琳



孙仲琳

明捷医药  副总监

毕业于复旦大学药学院,获得药物化学博士学位。曾就职于诺华(中国)生物医学研究中心,从事创新药物处 方前研究。在药物分离分析、结构鉴定、固态药物开发(晶筛、盐筛)、分析方法开发验证、临床前制剂开发以及药物成药性和可开发性评估等方面具有丰富的研究经验。


报告主题 

颗粒物表征和分析在药物研发领域中的应用及意义

报告摘要:

颗粒物研究贯穿于整个药物研究和开发过程中,从口服固体制剂中原辅料的颗粒表征,到液体制剂中的原料药颗粒控制,到吸入制剂中雾化颗粒表征,再到脂质体/脂肪乳中液滴颗粒,颗粒的大小、形态以及流动特性将直接影响到制剂的成型性、均一性、崩解性、溶出度、片剂硬度以及外观等。药物颗粒物(API)也是约 80% 固体制剂以及部分液体制剂的基础单元,与产品质量、性能以及工艺息息相关,直接决定药物的  最 终疗 效。除了原料药或制剂中原料药颗粒表征之外,注射制剂在生产、储存过程中有可能产生不溶性微粒或可见异物,对于不溶性颗粒的表征和异物鉴别也是注射制剂的质量研究关键一环。本次报告将基于广义的颗粒物概念,阐述药物研发领域关于颗粒物的研究内容及意义。


报告人:复纳科技 张传杰

张传杰

复纳科技 应用技术总监


飞纳电镜应用技术经理,长期从事扫描电镜操作,应用开发和培训等相关工作,熟悉各类药物相关样品的分析测试,参与多项扫描电镜自动化应用程序开发工作,参与 2021 年度国家药品标准制修订研究课题 2021Y05。


报告主题 

扫描电镜在药物粉体表征中的应用

报告摘要:

扫描电镜是微观结构表征的重要工具,但国内医药行业对于扫描电镜的使用尚处于起步阶段。本报告将介绍飞纳台式扫描电镜的基本原理与技术优势,结合具体案例展现药物粉体表征中的扫描电镜的不同手段与方法,并对应用中的注意事项进行讨论。


参会福利

参与本次研讨会将有机会获得精美礼品一份(复纳定制 64G 宇航员U盘 / 飞利浦电脑支架):



2023-02-24 16:03:00 163 0
直播预告 | 材料表征与分析检测技术

材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。 


TA仪器将参加2022年12月14-15日举办的“第四届材料表征与分析检测技术网络会议(iCMC 2022)”。两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为大家搭建公益学习互动平台,增进学术交流。



讲座预告

 讲座时间:

  • 2022年12月15日(周四),14:30-14:50,14:50-15:10


讲座主题:

  • 锂离子电池热性能表征和失效分析

  • 高压重量法在储氢材料研究中的应用


主讲人:


林超颖

TA仪器高级热分析应用专家


高分子专业硕士,毕业于浙江大学,2015年起就职于TA应用部门,现任TA仪器高级应用专家,负责热分析产品线的应用支持及开发工作,专注于各类材料的热分析、力学性能表征及失效分析等工作,对于DSC、TGA、 DSC、TMA、DMA及MS联用等技术的理论及其在锂电池、电子材料、聚合物等领域的应用实践均有丰富经验及深刻理解。


陈刚

TA仪器服务工程师


2000年毕业于华东理工大学,本科学历。从事德国Rubotherm磁悬浮天平系列设备的中国国内技术支持和售后服务近16年。曾多次前往德国原厂接受培训。熟悉国内磁悬浮天平用户及应用情况,对高压吸附领域有较深了解。曾工作于荷兰安米德公司,北京儒亚公司,于2017年加入美国TA公司,并工作至今。


2022-12-12 12:13:06 122 0
XRD图谱如何做物相分析
 
2011-10-28 14:20:57 522 2
化学物相分析和XRD物相分析,哪个更为准确?具体差别是什么?
 
2011-03-14 06:34:56 311 2
色谱柱能否分离样品中的分析物?

利用ACE键合相的固定相选择

分离度方程式可以确定影响分离度的参数:柱效(N)、容量因子(k)和选择性(α)。

在过去几年里,柱效和使用超GX色谱柱(被称为“UHPLC”色谱柱)作为实现分离目标的手段已得到了极大的重视。

UHPLC已通过更快速的分离和更快速的方法开发提高实验室生产力来证明了其价值。

然而,选择性往往被忽视,且其重要性也被强调柱效所掩盖。这是令人遗憾的。

在影响分离度的三个参数中,选择性是Z为重要的。

(参见图1)通过利用柱效和选择性,通常可以实现更好和更快的分离。


图 1:N、α和k对分离度(Rs)的影响

提高N,α或k可以提高分离度(Rs)。

然而,从这些图中可以看出,随着N或k值的提高,对分离度的改善效果也逐渐降低。

另一方面,提高选择性(α)则没有这个问题,因此其成为开发分离方法时的Z佳优化变量。


在反相色谱中,固定相与分析物之间存在多种相互作用的机制,这可以用来实现分离。

这些相互作用机制包括:疏水性结合、π-π、氢键、偶极-偶极和形状选择性。

不同类型的键合相将提供其中一种或多种相互作用机制。表1列出了ACE键合相和每种可能的主要相互作用机制,这取决于分析物和流动相条件。


表1: 比较不同键合相的分离机制/相互作用                                                                                    

ACE  

键合相  

疏水性结合  

ππ  

氢键结合  

偶极-偶极  

形状选择性  

C18  

 

 

 

 

 

C18-HL  

极强  

 

 

 

 

C18-AR  

 

 

中等  

中等  

中等  

C18-PFP  

 

 

 

 

 

AQ  

中等  

 

中等  

 

 

C8  

中等  

 

 

 

 

C4  

 

 

 

 

 

苯基  

中等  

 

 

中等  

 

CN  

 

 

 

 

 



 


利用键合相的选择性实现更好的分离。
图2表明了两种ACE键合相即C18-AR与苯基之间的选择性差异。
尽管两种键合相提供了强π-π和偶极-偶极相互作用的可能性,但是在其它可能的相互作用机制(特别是疏水性结合)的强度方面,它们存在显著差异。

C18-AR可能具有其它不同的分离机制,可以为复杂的混合物带来更好的分离效果。对于其他混合物,可能不是这种情况,这是ACE键合相的优势。

当开发分离方法时,ACE键合相可以提供各种可供选择的重要保留机制。

非常强大且独特的C18-AR和C18-PFP相只有在ACE和ACE Excel色谱柱中可以获得。
通过利用柱效和选择性,可以实现更好的分离。


图 2:C18-AR与苯基相之间选择性差异的比较

 

色谱柱尺寸: 50 x 2.1 mm, 3 μm
流动相:

A= 20mM KH2PO4,pH 2.7(溶于水中);
B= 20mM KH2PO4,pH 2.7(溶于甲醇/水中:65:35, v/v)
流速: 0.6 mL/min
温度: 60 ℃
检测: UV 214 nm
梯度: 5分钟内从3至B,并持续1分钟。

样品:
1. 甲硝唑
2. 3-羟基苯甲酸
3. 苯酚
4. 苯甲醇
5. 咖啡茵
6. 水杨酸
7. 喹喔啉
8. 苯甲酸
9. 奎宁
10. 非那西丁
11. 1,4-二硝基苯
12. 1,3,5-三硝基苯
13. 呋塞米
14. 1,3,5 -三甲氧基苯
15. 吡罗昔康
16. 卡维地洛
17. 苯甲酸乙酯
18. 去甲替林

C18-AR相的疏水性更大,这可以为色谱峰对(13,14)和(15,17)提供更多的保留值和更佳的选择性。还要注意C18-AR与苯基相的洗脱顺序有很多变化。


图3给出了键合相选择能力的另一实例。

一个分离是用C18键合相的UHPLC色谱柱完成,另一个分离是用C18-PFP键合相的UHPLC色谱柱完成。

C18-PFP键合相提供的额外分离机制,使得总体分离效果更佳出色。

图 3:ACE Excel可以获得zhuo越的分离度和峰形:药物及其相关物质的UHPLC结果

 

条件
色谱柱尺寸:50 x 2.1mm
流动相:

A = 5mM甲酸(溶于水中)
B = 5mM甲酸(溶于甲醇中)
梯度:5分钟内从3至B
流速:0.6 mL/min
温度:40 ℃
检测:UV 254 nm

样品
1. 对乙酰氨基酚
2. 氢氯噻嗪
3. 甲基苯基亚砜
4. 甲基苯砜


在C18 UHPLC色谱柱和C18-PFP色谱柱上同样快速地产生色谱图。

然而,C18-PFP色谱柱可以为色谱峰对(13,14)和(15,17)提供更佳的选择性,因此能够提供优越的总体分离性能。



2019-05-30 11:06:18 433 0
用SRS显微镜对配方产品进行表征分析

成分定位和皮肤渗透可视化

从药品和消费者健康产品到农用化学品和油漆,霜剂、糊剂、凝胶、乳剂和片剂常见于众多制造领域。为提高有效性以及产品性能和安全性,有必要了解产品中各成分之间的相互作用。具备能评估活性成分的结构、稳定性并对其输送进行可视化的技术对配方产品制造业而言具有重大价值。


成分分布可视化

受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS)可提供具有高空间和时间分辨率的无标记化学信息因此非常适合用于可视化配方产品的结构,包括监测单一成分在使用期间的所带来的结果(包括在使用期间监测单一组分的命运)。通过选择适当的拉曼位移,可以从预先存在的单个成分的拉曼光谱(图1左),或从获取λ扫描生成的SRS光谱(见下文,以及图3中的示例)进行SRS对比,从而对单一成分进行成像。

图1:左:在532nm激发下获得的石蜡(红色)和水(蓝色)的自发拉曼光谱。右:用SRS显微镜对商业水乳剂配方进行成像,以显示凡士林油相(红色,2850 cm-1处的CH₂键)vs水相(蓝色,3400 cm-1处的O-H键)。通过简单地将一小滴样品置于两个盖玻片之间,准备进行正向SRS成像。


除了这些对比波数外,还应在附近预期无拉曼强度的波数处获取“非共振”控制图像(见图2中的示例),从而确保检测到的信号基于拉曼光谱,并能识别任何杂散信号,如激光吸收产生的伪影。在各成分/相的所需波数下获得图像后,可将图像合并成一个复合图像,从而了解材料中不同成分之间的关联性。除了SRS对比,还可通过使用二次谐波生成或荧光等方法来同时成像,获得其他结构信息。图2中的图像显示了用SRS显微镜成像的防晒霜样品中油vs水的相位分布,以及用SHG可视化的氧化锌颗粒。

图2:用SRS和SHG显微镜对防晒霜配方进行成像,用正向SRS显示油相vs水相,用epi-SHG显示氧化锌颗粒分布。


生成SRS光谱以提供化学和结构信息

SRS光谱可通过执行λ扫描来生成,在此期间,SRS图像在泵浦光束的波长上以非常小的增量被捕获,以生成跨越感兴趣波数范围的图像栈。图3显示了在含有多种活性成分的皮肤用药物配方上获得的这种λ扫描图像栈。当泵浦光束扫过与拉曼光谱的指纹区相对应的波长时,不同的成分依次受到激发,因为其波数受到刺激。获得这些图像栈后,可立即选择相关特征来生成感兴趣区域(ROI)。从这些ROI中,通过绘制ROI SRS信号强度和泵浦光束波长(可转换为波数)的关系,生成SRS光谱。有时,为波长堆栈中所有图像生成最大投影有助于在一张图像中实现所有特征的可视化,确保不会遗漏任何重要特征。


皮肤用药物配方的SRS λ扫描图像堆栈。

图3:左:皮肤用药物配方的SRS λ扫描。从显示的图像栈中创建的最大投影图像,注释描述了ROI。在约2000 cm-1至1000 cm-1的范围内,以泵浦光束的0.1 nm增量获取图像。右:各ROI的SRS光谱根据SRS信号强度和波长绘制而成。


从λ扫描中生成SRS光谱后,可立即将这些光谱与单一成分的自发拉曼光谱进行比较。将光谱信息与图像中的形态信息相结合,对配方的问题分析具有重大价值,如识别是否存在多晶、共晶或氧化产物。


皮肤中成分渗透的可视化

除了分析配方本身的特性外,SRS显微镜也可用于对单一成分使用后带来的最终结果进行可视化。例如,监测化学品在皮肤中的渗透,这在药物输送和化学风险评估中具有极其重要的应用价值。图4显示了4-氰基苯酚给药后皮肤的图像。将组织冷冻切片,用SRS成像,以在2235 cm-1(品红色)处通过腈基官能团的对比来显示这种化合物的分布。在2850 cm-1处使用CH2键振动模式(红色)、在1666 cm-1处采用酰胺I(蓝色)以及使用SHG通道的胶原蛋白分布(绿色),对皮肤结构进行可视化。

图4:4-氰基苯酚给药后的猪皮肤的正向SRS和Epi-SHG合成图像。在2850 cm-1处使用CH2键振动模式(红色)、在1666 cm-1处采用酰胺I(蓝色)以及使用SHG通道的胶原蛋白分布(绿色),对皮肤结构进行可视化。在2235 cm-1处采用腈基官能团显示4-氰基苯酚的分布(品红色)。*


由于SRS信号与浓度呈线性关系,因此有可能通过图像分析提取某些定量信息,例如,化学物质的相对浓度和皮肤深度。对于在同一共焦平面上成像的物理截面,该操作合理且简单。然而,当对三维标本进行成像时,必须对激光散射和随着深度增加产生的吸收所致的信号损失进行校正。


试图对不含独特化学官能团的化学物质进行成像时,有时很难获得特定的对比度。在这种情况下,对感兴趣的分子进行氘化,可帮助将峰值转移到拉曼光谱的生物“沉默”区域,该区域的组织中几乎无自然存在的信号。这种方法可便于对敏感和化学特异性成分进行可视化,而无需引入会扰乱物理化学特性,从而扰乱药代动力学特征的荧光基团。另外,还可采用多变量数据分析方法,对不同成分进行光谱拆分


致谢

衷心感谢“分析化学信托基金”和“分析测量科学共同体”的支持。


*数据通过与英国巴斯大学的Richard Guy教授小组合作获得。本研究的资金部分由美国食品药品监督管理局资助(1U01FD006533-01)。所有观点不一定反映美国卫生与公众服务部的官方政策;提到任何商品名称、商业惯例或组织也不一定获得美国政府的认可。


参考文献:

· Saar BG, Contreras-Rojas LR, Xie XS and Guy RH (2011). Imaging drug delivery to skin with stimulated Raman scattering microscopy. Molecular Pharmaceutics. 8, 969-75.

· Belsey NA, Garrett NL, Contreras-Rojas LR, Pickup-Gerlaugh AJ, Price GJ, Moger J and Guy, RH (2014). Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. Journal of Controlled Release, 174, 37-42.

· Chiu WS, Belsey NA, Garrett NL, Moger J, Delgado-Charro MB and Guy RH (2015). Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the USA, 112, 7725-7730.

2023-02-14 16:33:14 138 0
MCU上的ADC如何检测开路电压
目前我用MCU上的ADC做测量,一根引脚作为ADCIN,相邻的一根引脚作为高电平输出。此时检测ADC电压值是否为两端的开路电压?(VDD3.3V,此时ADC检测2.4V)如果不是,那我用万用表如何测... 目前我用MCU上的ADC做测量,一根引脚作为ADC IN,相邻的一根引脚作为高电平输出。此时检测ADC电压值是否为两端的开路电压?(VDD3.3V,此时ADC检测2.4V)如果不是,那我用万用表如何测量?(电路学太差) 展开
2016-02-07 17:50:50 325 1
DAC和ADC的实现各有哪些方法?
DAC和ADC的实现各有哪些方法?... DAC和ADC的实现各有哪些方法? 展开
2011-10-24 22:26:48 452 1
adc数据采集的偏移和增益怎么确定
 
2018-11-20 21:33:56 321 0

10月突出贡献榜

推荐主页

最新话题