仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

应用方案

仪器网/ 应用方案/ Electronic nose and data analysis for detection of m

立即扫码咨询

联系方式:400-822-6768

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

北京盈盛恒泰科技有限责任公司是一家专业从事食品分析检测仪器和环境应急检测仪器的销售技术支持和售后服务工作公司目前是日本INSENT日本JWP意大利VELP美国FTC德国AIRSENSE德国OWR美国UNITY美国Navas美国FiltationEngineering等世界仪器制造商的ZG区营销合作伙伴和技术服务ZX,产品覆盖食品感官分析食品营养分析食品安全检测及环境应急监测等公司在香港北京上海广州成都海口银川等地设有分公司和办事机 An!°electronicnose!±hasbeenusedforthedetectionofadulterationsofsesameoil.Thesystem,comprising10metaloxidesemiconductsensors,wasusedtogenerateapatternofthevolatilecompoundspresentinthesamples.Priortodifferentsupervisedpatternrecognitiontreatments,featureextractiontechniqueswereemployedtochooseasetofoptimaldiscriminantvariables.Principalcomponentanalysis(PCA),Fisherlineartransformation(FLT),stepwiselineardiscriminantanalysis(Step-LDA),selectionbyFisherweights(SFW)wereused,respectively.Andthen,lineardiscriminantanalysis(LDA),probabilisticneuralnetworks(PNN),backpropagationneuralnetworks(BPNN)andgeneralregressionneuralnetwork(GRNN)wereappliedaspatternrecognitiontechniquesfortheelectronicnose.AsforLDAandPNN,FLTwasthemosteffectivefeatureextractionmethod,whileStep-LDAwasthemosteffectivewayforBPNNandFLTwasmoresuitableforGRNN.Withonlyonesamplemisclassi?edinourexperiment,LDAismorepowerfulthanPNN.ExcellentresultswereobtainedinthepredictionofpercentageofadulterationinsesameoilbyBPNNandGRNN.Aftertrainingforsometime,BPNNcouldpredicttheadulterationquantitativelymorepreciselythanGRNN,whereaswithFLTasitsfeatureextractionmethodandwithoutiterativetraining,GRNNcouldalsoyieldratheracceptableresults.?2006ElsevierB.V.Allrightsreserved. 电子鼻-Z传感器生产商产品

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

推荐方案

在线留言

换一张?
取消