仪器网(yiqi.com)欢迎您!

| 注册
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

全新高通量光片显微镜,帮您实现活细胞长时间多样品高分辨成像!

Quantum Design中国子公司 2022-11-16 19:48:35 115  浏览
  • 新品上市

    瑞士Viventis公司推出的高通量活细胞高分辨光片显微镜LS系列,是一款全新的光片成像平台,该设备适用于活性光敏感样品(如卵子、胚胎、类器官等)的长期成像,具有低光毒性、高分辨率等特点。


    高通量活细胞高分辨光片显微镜是近些年来研发的独特技术,它的照明光是与一张与成像面平行的薄薄的光片,只有焦平面的样品被照亮,而光片上下的样品不受影响。该成像系统在细胞与组织层面的实时成像对于深入理解生物学行为至关重要。尤其适合于对直径达300 μm的光敏样品(如卵母细胞,胚胎和类器官)进行长期实时高时空分辨率和低光毒性的观察与成像。



    Viventis提供细胞发育过程的环境并进行实时成像


    ViventisNEW ARRIVAL的主要特点

    01双侧照明光片显微镜

    双侧照明均可以通过软件进项控制,仅需要点击鼠标就可以控制光束的平移和旋转。光片厚度仅为1.5~6 μm,且厚度可调、位置可自动校准,以适应更多的样本尺寸。配合上高NA物镜,可以实现更好的穿深,更少的伪影。另外,系统配置可见激发激光器,让用户通过检测物镜,对自定义样品中感兴趣的区域进行快速定位成像操作。


    02高通量,多样品同时成像

    Viventis光片显微镜可以快速对多个样品进行同时成像而无需更换样品,支持绝大多数胚胎样品并可并排摆放,方便添加培养基、加药等操作。Viventis的样本槽大于50 mm,对于并排的样本系统也可以连续采集成像。


    对于细胞球、类器官等本身较易漂浮的样本,Viventis也提供了较好的解决方案,采用人工基底膜/水凝胶嵌入式等方案,实现上述样本的稳定成像。




    03软件界面简洁 易于上手

    Viventis系统对于光片成像的初学者来说操作简单,多种模式一键切换,软件界面简洁,可以帮助您快速的建立自己的光片成像之旅,打开lightsheet大门,助力科研之路。




    若有任何关于技术或设备其他问题欢迎您扫描下方二维码联系QDC专业的技术工程师或直接致电咨询010-85120280。


    扫描上方二维码,即刻咨询高通量活细胞高分辨光片显微镜LS


    典型文章:

    [1] Science. Mechanism of spindle pole organization and instability in human oocytes.2022 

    [2] Nature. Left–right symmetry of zebrafish embryos requires somite surface tension.2022 

    [3] Nature cell biology. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. 2021

    [4] Cell Stem Cell. Capturing Cardiogenesis in Gastruloids. 2021

    [5] Science. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. 2019 

    [6] Nature. Self-organization and symmetry breaking in intestinal organoid development. 2019


    典型国外用户:


    国内用户:




参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

全新高通量光片显微镜,帮您实现活细胞长时间多样品高分辨成像!

新品上市

瑞士Viventis公司推出的高通量活细胞高分辨光片显微镜LS系列,是一款全新的光片成像平台,该设备适用于活性光敏感样品(如卵子、胚胎、类器官等)的长期成像,具有低光毒性、高分辨率等特点。


高通量活细胞高分辨光片显微镜是近些年来研发的独特技术,它的照明光是与一张与成像面平行的薄薄的光片,只有焦平面的样品被照亮,而光片上下的样品不受影响。该成像系统在细胞与组织层面的实时成像对于深入理解生物学行为至关重要。尤其适合于对直径达300 μm的光敏样品(如卵母细胞,胚胎和类器官)进行长期实时高时空分辨率和低光毒性的观察与成像。



Viventis提供细胞发育过程的环境并进行实时成像


ViventisNEW ARRIVAL的主要特点

01双侧照明光片显微镜

双侧照明均可以通过软件进项控制,仅需要点击鼠标就可以控制光束的平移和旋转。光片厚度仅为1.5~6 μm,且厚度可调、位置可自动校准,以适应更多的样本尺寸。配合上高NA物镜,可以实现更好的穿深,更少的伪影。另外,系统配置可见激发激光器,让用户通过检测物镜,对自定义样品中感兴趣的区域进行快速定位成像操作。


02高通量,多样品同时成像

Viventis光片显微镜可以快速对多个样品进行同时成像而无需更换样品,支持绝大多数胚胎样品并可并排摆放,方便添加培养基、加药等操作。Viventis的样本槽大于50 mm,对于并排的样本系统也可以连续采集成像。


对于细胞球、类器官等本身较易漂浮的样本,Viventis也提供了较好的解决方案,采用人工基底膜/水凝胶嵌入式等方案,实现上述样本的稳定成像。




03软件界面简洁 易于上手

Viventis系统对于光片成像的初学者来说操作简单,多种模式一键切换,软件界面简洁,可以帮助您快速的建立自己的光片成像之旅,打开lightsheet大门,助力科研之路。




若有任何关于技术或设备其他问题欢迎您扫描下方二维码联系QDC专业的技术工程师或直接致电咨询010-85120280。


扫描上方二维码,即刻咨询高通量活细胞高分辨光片显微镜LS


典型文章:

[1] Science. Mechanism of spindle pole organization and instability in human oocytes.2022 

[2] Nature. Left–right symmetry of zebrafish embryos requires somite surface tension.2022 

[3] Nature cell biology. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. 2021

[4] Cell Stem Cell. Capturing Cardiogenesis in Gastruloids. 2021

[5] Science. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. 2019 

[6] Nature. Self-organization and symmetry breaking in intestinal organoid development. 2019


典型国外用户:


国内用户:




2022-11-16 19:48:35 115 0
活细胞长时间多样品成像利器——高通量活细胞高分辨光片显微镜顺利落户北京生命科学研究所

近日,Quantum Design中国在北京生命科学研究所成功安装了Viventis LS2高通量活细胞高分辨光片显微镜,并对用户进行了仪器的详细介绍和全面的操作培训。高通量活细胞高分辨光片显微镜凭借其对胚胎、类器官等生物活体样品的高分辨率长期成像功能,将助力北京生命科学研究所在活体成像领域取得更进一步的发展。


高通量活细胞高分辨光片显微镜装机完成


高通量活细胞高分辨光片显微镜介绍


高通量活细胞高分辨光片显微镜用户培训


高通量活细胞高分辨光片显微镜是近些年发展起来的一种成像技术,该技术在细胞与组织层面的实时成像对于深入理解生物学行为至关重要,尤其适合对直径达300 μm的光敏样品(如线虫、胚胎、类器官、果蝇和斑马鱼等活细胞)进行长期实时高分辨率和低光毒性的观察与3D成像。仪器在国外部署于马克思-普朗克研究所、居里研究所、欧洲分子生物学实验室苏黎世联邦理工学院等著名院所和机构,并已在高水平期刊发表多篇优秀文章:

[1]. So, Chun, et al. "Mechanism of spindle pole organization and instability in human oocytes." Science (2022)

[2]. Naganathan, Sundar R., Marko Popović, and Andrew C. Oates. "Left–right symmetry of zebrafish embryos requires somite surface tension." Nature (2022)

[3]. He, Zhisong, et al. "Lineage recording in human cerebral organoids." Nature methods (2022)

[4]. Pérez-Núñez, Iván, et al. "LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer." Nature Cancer (2022)

[5]. Mailand, Erik, et al. "Tissue Engineering with Mechanically Induced Solid‐Fluid Transitions." Advanced Materials (2022)

[6]. Yang, Qiutan, et al. "Cell fate coordinates mechano-osmotic forces in intestinal crypt formation." Nature cell biology (2021)

[7]. Rossi, Giuliana, et al. "Capturing cardiogenesis in gastruloids." Cell stem cell (2021)

[8]. Dumortier, Julien G., et al. "Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst." Science (2019)

[9]. Serra, Denise, et al. "Self-organization and symmetry breaking in intestinal organoid development." Nature (2019)



高通量活细胞高分辨光片显微镜简介:

瑞士Viventis Microscopy公司研发推出的高通量活细胞高分辨光片显微镜LS系列,是一款全新的光片成像平台,主要用于活体的光敏感样品(如胚胎、类器官等)的低光毒性、高分辨率的长期成像。系统在活体成像应用中具有众多优势:

★ 长期成像:通过稳定的温度和气相控制,在真实的生理环境下进行生物样品的培养与3D成像。

★ 简易上样:开盖式设计,很大程度简化上样操作;专用多孔样品室,可适应样品形状,在长期成像过程中可更换成像液

★ 多角度照明与成像:从多个不同角度,使用相互独立的成像参数进行照明与成像。

★ 支持多种样品:可适配由数十纳米至微米级尺寸的不同样品,包括线虫、胚胎、类器官、果蝇和斑马鱼等


相关产品:

高通量活细胞高分辨光片显微镜:https://www.yiqi.com/zt2203/product_906537.html

2023-03-21 19:20:48 154 0
如何实现快速、稳定的多色活细胞成像

MICA


研究人员在活细胞成像技术的帮助下,可以深入了解活细胞甚至完整生物体的动态过程,这包括细胞内和细胞外活动。一些代表性的示例包括蛋白质或脂质转运、免疫细胞迁移,类器官的组织结构等。活细胞成像要求样本和显微镜系统具备特定的属性。在这篇文章中,我们描述了MICA如何解决活细胞成像的问题,并提供了合适的示例。


活细胞成像

活细胞成像在微观层面揭示了生物体变化的全过程。它要求将样本保存在接近生理的条件下。我们会在后面重 点介绍到。典型的样本包括活细胞培养、活组织、类器官或模式生物,通常会使用荧光显微镜研究这类样本。为此需要转染细胞,从而产生表达荧光标记蛋白质的转基因体。此外,还可以使用活细胞染料。


挑战

环境条件

为尽可能获得接近真实状态的实验结果,活细胞成像条件必须模拟生理环境。不同的生物体所需的生理条件也不同,包括温度、pH、氧气含量等。例如,哺乳动物细胞要求的温度是37°C左右,昆虫细胞的最 佳温度是27°C,鱼为28°C,而裂殖酵母则为30°C左右。


在碳酸氢钠缓冲液的帮助下,细胞培养基内的pH值持续保持在7.0-7.4,这就要求培养箱环境中相应地存在二氧化碳。此外,培养箱的环境应该是水饱和的,这样就不会有培养基蒸发了。


体内不同组织和细胞的所需氧含量是不同。目前细胞培养箱和活细胞成像并没有广泛考虑氧的问题。不理想的氧气水平会导致增殖率下降(高氧)或代谢率降低(低氧)(Hadanny, A.; Efrati, S.)。


光保护是活细胞成像的另一个挑战,因为光照射可以影响活细胞本身以及荧光团。例如,强光可以导致DNA损伤或光漂白荧光团。


MICA的设计旨在应对所有这些挑战

外壳本身就像一个培养箱。这意味着样本周围空间被加热到所需的温度(比室温高5°C,最 高42°C),并平衡到所需的二氧化碳浓度和湿度。


如果需要的话,氧气浓度可以进行调节。所有的参数均可通过MICA LAS X软件控制。样本的光照射条件由OneTouch功能设置,并可通过“Sample Protection – Image Quality”滑块进行调整,以平衡所需的信号量与保护活细胞和荧光团。


为了在最 小的环境干扰下获取样本,在前门中隐藏有一个小的服务挡板。



图1:MICA是一个培养箱。盖子下面的整个空间可以被平衡到所需的温度、湿度和二氧化碳浓度。为了快速检查样本或操作,前盖可以折叠下来,一个小的服务挡板可以滑开。


光可能是有毒的

由于光对样本有负面的影响,任何光都可能干扰细胞内的分子,例如紫外线可能伤害皮肤。此外,荧光团可能形成与分子相互作用的自由基。光的负面作用被称为光毒性。挑战在于激发产生足够的信号来解答科学问题的光强与尽量减少光毒性的平衡。MICA通过提供一个工具来帮助用户在不需要了解技术背景的情况下精确地平衡这两件事——“Sample Protection – Image Quality”滑块。只需点击一下,OneTouch将根据滑块上的选择设置所有的激发和检测参数。


细胞内的动态变化可能非常快。例如,细胞器或囊泡分子的运动速度可达几微米/秒(Alberts B.等人)。这极大程度的考验了对图像采集的要求,特别是当需要对多个荧光团进行成像时。这里的问题是,生物不会暂停所有的荧光通道从而在相同的状态下进行采集,而是持续不断进行。在一个经典的基于荧光滤片的系统中,通常最耗时的步骤是为不同的通道更换滤光片。这导致实验中两个荧光团在两个不同的时间点被监测,导致无法实现精确的时空相关性。


MICA FluoSync™技术使用户能够同时获得多达四个荧光通道。这意味着不同的囊泡、细胞骨架和运动蛋白可以以100%的时空相关性进行成像。此外,同步采集使成像时间点的节奏更快,因此,可以用更灵敏地记录快速的细胞运动。


在给定的时间范围内记录更多的时间点信息

在一个实验中记录更多的时间点信息可能是一个挑战。假设用户想每10分钟记录一次,那么在下一个周期开始之前,只能记录一定数量的位置。通常情况下,如果您想在同一位置记录多个标签,就会有更多限制,但MICA不存在这个问题。FluoSync™技术使用户能够以四倍的速度记录,因为它最 多可以同时获取四个标签,从而为用户留下更多的时间来记录更多位置。用户不必再在标签数量和位置之间进行权衡。


寻找正确的位置进行成像

寻找正确的样本位置和设置实验是具有挑战性的。实验人员需要使用目镜了解样本的整体概况,并记住不同的位置。一些显微镜可以生成样本的预览,这可以提供一些帮助,但实验人员仍然需要指出图像中要进一步成像的位置。MICA的Navigator工具可简化这一过程。用户可以生成低放大倍数或高放大倍数的预览,轻松定位感兴趣的区域,这些感兴趣区域可以用工具直接在图像上标记出。通过这种方式,后续高分辨率的图像可以保存下来。


选择正确的活细胞成像物镜

由于活细胞成像通常是在水溶液中进行的,高倍率物镜通常使用水作为浸没介质,因为它与培养基介质的光学特性相匹配。将水手动放在物镜和样品之间是很麻烦的,而且会导致样本的焦点和位置的改变。此外,水蒸发得相当快,需要不断补充。MICA集反馈回路于一体,在水浸式物镜的整个使用过程中,首先建立并维持浸没状态。这种方法不需要手动操作,可以进行长期实验。


为进一步提高光学质量,一些物镜会通过校正环来补偿样本平板的厚度。校正环可手动、也可自动操作。MICA配置了自动校正环功能,可实现自动优化。


重复实验之间的可比性

科学实验的一个关键方面是,尽可能少的变更可变参数以实现对样品和结果影响的把控。这包括在所有的实验中应用同一套成像条件。一个方面是稳定的环境条件(温度、pH值和O2,见上文)。另一个重要方面是相同的成像参数(激发和检测)。MICA默认在不同项目中保持成像参数不变,用户仅基于自己的需求进行调整。可根据参考图像恢复成像参数。在环境条件方面,MICA是一个培养箱。MICA条件稳定能允许MDCK囊肿连续生长3周(见下文)。


方法

MICA有用于活细胞成像的特殊的样本夹。这包括用于小型(36毫米)和中型(60毫米)培养皿的支架。



图2:活细胞成像样本架。有适用于不同尺寸的培养皿的支架。活细胞成像也可以使用经典的载玻片支架(未显示),例如,使用ibidi µ-Slide 8 Well载玻片支架。

囊泡

U2OS细胞同时用WGA-Alexa488和WGA-Alexa555进行染色。这两种染料都聚集在细胞的质膜和所有囊泡和内体上。荧光剂同时或序列成像以进行比较。环境被设定为37℃恒温和5%CO2,即生理pH水平。


对于高倍率成像,使用了带有自动加水功能的63x/1.20水镜。


斑马鱼

发育中的胚胎从球期到体期的全过程。图像中的鱼(斑马鱼)是一个中胚层带有报告基因的转基因鱼(Tbxta:GFP),Dextran-Alexa647标记间质。胚胎保持在28℃。


囊肿

a) 将稳定转染了EB1-GFP的MDCK细胞在基质Matrigel中培养,在ibidi µ-Slide 8 Well玻片上诱导囊肿生长。环境被设定为保持恒定的37℃,5%的二氧化碳和高湿度。


在第2天,细胞已经显示出三维聚团,并在基质Matrigel内高度流动。


在第9天,囊肿保持生长相对稳定,并用较高的放大率(63倍)进行成像。采集6天的时间序列(6小时的时间间隔的GFP和IMC(明场成像的调制对比))。三维采集能获得囊肿的三维图像(418层,220.7纳米间距,总Z-Stack大小92.02微米)。在第9天,囊肿除了EB1-GFP标记之外,还被Mito-Blue、SiR-Actin和Tubulin-SPY555标记。


b) 5000个稳定转染了EB1-GFP的MDCK细胞在U型孔板中生长。有趣的是,这些细胞在几天后也形成了囊状结构。其中一个囊状结构在共聚焦模式下被进一步研究,以进行三维重建。


结果

短期的快速事件实验

U2OS细胞用两种不同的荧光染料标记相同的结构,WGA-Alexa488和WGA-Alexa555,它们都与细胞膜结合。通过在MICA序列模式下,这个实验设置能够在获取WGA-Alexa488(绿色)和WGA-Alexa555(红色)之间引入一个人为的时间差。有了MICA同时成像技术,两种不同的Alexa染料标记同样的膜结构,能够在最 小时间差的两个时间点成像。你可以在两种方法的比较中看到,在同步扫描中所有的囊泡都是黄色的——即绿色和红色的混合物,而在序列扫描中一些快速移动的囊泡看起来是两种不同的结构——即一个绿色和一个红色的囊泡。


中时程实验

斑马鱼是一种模式生物,经常用于发育研究。在这个例子中,我们感兴趣的是研究细胞在空间的协调性,而这种协调性受到周围组织的粘度的影响。在THUNDER模式下对两个通道进行了24小时的成像,并使用LVCC以获得更多的细节。 


长时程实验

MDCK细胞是极化的上皮细胞,如果在Matrigel这样的基质上培养,会成熟为所谓的囊肿。这些三维结构可用于研究发育过程和潜在的蛋白质运输机制。这里,细胞被稳定地转染了与GFP相连的微管结合蛋白,并在MICA中培养了3周



图3:MDCK囊肿。3周的活细胞实验。时间间隔为6小时。扩展景深(EDOF)。上图:通道叠加。中图:EB1-GFP。下图:明场。THUNDER  LVCC技术。比例尺为20μm。图片由德国马尔堡菲利普斯大学的Ralf Jacob和Manuel Müller教授提供。


发育9天后,用活细胞染料对上述一些囊肿进行了染色,以观察肌动蛋白、微管蛋白和线粒体,GFP标记的微管结合蛋白,在共聚焦模式下对囊肿进行了成像。



图4:第9天的MDCK囊肿(CLSM)。除EB1-GFP(绿色)外,部分囊肿用Mitto - blue(品红色)、SiR-Actin(红色)和Tubulin-SPY555(黄色)染色,并用63x/1.20物镜在共聚焦模式下成像。比例尺 = 20 µm。图片由德国马尔堡菲利普斯大学的Ralf Jacob和Manuel Müller教授提供。


在U型孔板中培养细胞也可形成囊状结构。本实验中,MDCK细胞从第1天开始在MICA上培养并在明场和宽场荧光模式下记录,以研究囊肿的形成。MICA培养箱的特性使细胞在发展成囊状结构的过程中保持良好的状态


培养14天后,在低倍镜共聚焦模式对囊肿进行成像,以确定一个感兴趣的囊肿。96孔板筛选样本以寻找合适位置来做进一步研究可能是很麻烦的。Navigator工具在此帮助实现样本的预览,并轻松地导航到相关的感兴趣的区域。



图5:用10x/0.32物镜和GFP通道对第14天的囊肿进行预览(CLSM)。


然后用63x物镜在LIGHTNING共聚焦模式下对其中一个囊肿进行了更细节的成像。63x/1.20水镜的加水是自动建立,并通过自动校正环对样品进行了优化。视频5显示了共聚焦和LIGHTNING的成像效果。


结 论

MICA适用于快速、短期到几周的长期活细胞成像实验,帮助用户获得可靠的结果。集成的培养系统在温度和pH值方面提供了接近生理的条件,使活细胞成像可以持续数周。另外,可以控制氧气水平,以获得更高的重要数据。FluoSync™技术可以同时对多达四个荧光团进行成像,这意味着可以对快速发生的细胞事件进行绝 对的时空相关性成像。此外,FluoSync™缩短了记录多色图像之间的间隔,从而提高了时间分辨率。THUNDER和LIGHTNING帮助用户从样本中提取更多的细节,借助OneTouch的照明和自动补水的流程,即使是仅接受少量培训和有限技术背景的人员都可以轻松使用。


参考资料

·Making Long-term Time-lapse Microscopy More Efficient, Science Lab (2022) Leica Microsystems.

·Hadanny, A.; Efrati, S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020, 10, 958.

·Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Molecular Motors.



2022-12-25 11:00:49 151 0
明美显微镜相机应用于活细胞成像

明美显微镜相机应用于活细胞成像

研究活细胞时,常见的障碍包括光毒性和光损伤。 要捕捉快速的生物过程,关键是保持细胞健康并获得清晰的图像,确保数据可靠、无伪影,此次,深圳用户需要显微镜相机搭配蔡司倒置显微镜,用于活细胞成像观察。

 

明美深圳区域工程师推荐了显微镜相机MSX1,1000万高分辨率显微相机,准确还原样品的精细结构和真实色彩;同时,通过硬件加速,大大提升了相机运行速度,图像清晰,数据准备,效果获得用户的认可。

显微镜相机MSX1是实验室显微设备专用相机,用户已有的显微设备通过安装显微镜相机,将图像或视频捕获可供后继处理与分享。对于显微相机来说,高质量的显微镜适配器是保证从显微镜获取高清晰数字图像的关键。 

 

明美显微镜相机MSX1适配的显微镜包括蔡司、尼康、徕卡和奥林巴斯等四大国际品牌以及其他中国显微镜厂家的显微镜。

您若对显微镜相机感兴趣或存在疑问,欢迎与我们联系,我们将竭诚为您服务!

 来源:https://www.mshot.com/article/1641.html

2023-01-12 20:48:45 143 0
全新的MuviCyte™长时间活细胞观察系统进行细胞迁移功能检测

细胞迁移,指的是细胞在接收到迁移信号或感受到某些物质的浓度梯度后而产生的移动。移动过程中,细胞不断重复着向前方伸出突触/伪足,然后牵拉后方胞体的循环过程。细胞骨架和其结合蛋白,还有细胞间质是这个过程的物质基础,另外还有多种物质会对之进行精密调节。细胞的运动有很多种,有生理性运动,如发育过程中的细胞运动,生殖细胞、干细胞的成熟过程中的位置变化。也有病理性变化,如肿瘤的迁移和侵袭。

从癌症的产生到转移,血管供给以及分裂增殖都一直是医学和生物学研究的热点。癌症细胞增殖失控,短时间内可以繁殖出大量后代,这样首先会造成生长空间的局促和养分,如氧气的紧张。这样恶性肿瘤内会形成一片坏死区,正如上面在组织损伤里面提到的,机体会尝试“修复”这些损伤。坏死组织会释放出一系列促血管生成因子,如血管内皮生长因子以及各种免疫细胞,如巨噬细胞。巨噬细胞也会释放大量促血管生成细胞因子和生长因子。因此肿瘤的研究伴随着复杂的细胞运动,如肿瘤细胞沿着循环系统的运动,血管内皮细胞和免疫细胞进入肿瘤实体的运动。

 

划痕法是经典的细胞行为学检测方法。在平铺的细胞单层上划出一条痕迹,然后清洗更换培养液后,细胞会从原有位置向划痕处迁移。统计划痕宽度和面积的变化就可以监控细胞迁移的速度和细胞迁移的能力。

以前在做划痕实验的时候受到诸多限制:首先微孔板的孔不能太小,孔越小,枪头越难伸进去;其次划出的痕迹边缘歪斜,无法形成一条直线;孔与孔之间的划痕宽度也不均一。这给划痕这个时间梯度的实验带来了很大的困扰。在多次的拍照过程中,由于划痕宽度的差异性对于划痕拍照位置的复位要求甚高。然而随着细胞迁移的发生,细胞的原位的形态和分布也发生的动态变化。所以复位划痕的拍照位置成为就成为了一个力气活:既然无法准确找到,那就全部拍下;既然每个位置宽度不一,那就全部统计。

借助MuviCyte™长时间活细胞成像系统的划痕套装。轻轻一划,解决全部困扰。

借助Scratcher整齐的96针,可以在96孔微孔板底面整齐的划出宽度均一的划痕。

 

借助MuviCyte™长时间活细胞成像系统可以盯住一个视野不停的拍。然后生成无抖动的视频。

 

借助专业的划痕分析软件,对划痕宽度、面积、愈合速度进行分析,可以获取的参数包括:

划痕面积

划痕的覆盖度

划痕的宽度

划痕的愈合速度

相对划痕密度

对于原始细胞区域、原始划痕区域、划痕分界线、迁移后细胞的区域进行jing准的划分,保证分析结果的精确。轻松的完成整个实验,再也不用熬夜拍划痕了。

MuviCyte™已于2020年1月1日全新上线,借助它的多荧光通道和多种物镜选择,可以完成多种复杂的复杂细胞模型的拍摄和观察,在肿瘤免疫、干细胞等多个领域都有重要的应用。

扫描下方二维码或复制下面链接打开,即可下载珀金埃尔默MuviCyte™活细胞成像系统相关资料。

下载链接: http://hyw3rjq7ezkfsnvu.mikecrm.com/naj9QZD

 


2020-01-09 10:08:34 414 0
活细胞成像简介

了解复杂且快速变化的细胞动力学是深入探索生物进程的重要一步。因此,现代生命科学研究越来越需要关注于在分子水平上实时发生的生理事件。
 
 
观察和分析活细胞时面临的挑战
在固定细胞或组织中,获取样品“分子状态”的信息已是一项艰巨的任务。如果需要获取实时信息,,就必须尽可能在实验过程中保证细胞自然地运行生理机制,因此将加大实验的困难程度。此外,由于很多生理过程的持续时间仅有几秒甚至几毫秒(例如细胞内离子水平的变化),必须在相对较短的时间内采集大量信息。
满足这些挑战性需求的一种方法是采用被统称为活细胞成像的光学技术。活细胞成像可研究活细胞中的实时动态生理过程,而非提供细胞当前状态的一幅“快照”。它把快照转变成了电影。活细胞成像可提供单个细胞、细胞内网络(原位)甚至整个生物体(体内)中动态发生分子事件的空间和时间信息。这些特性让活细胞成像成为了研究细胞生物学、癌症、发育生物学和神经科学中动态生理过程的必要技术。
近年来,电子学、光学和生物化学的迅速发展,使得科学家们更轻松的实现活细胞成像。如今的活细胞成像方法使用优化的显微镜、专用光源、高速相机、高灵敏度探测器和特异性的荧光标记物,可同时提供技术成熟且仍具有创新性的全套解决方案,满足在分子水平上对单细胞或整个细胞网络进行实时研究的挑战性需求。
使用线粒体标记物(MitoRed®)和荧光钙染料(Fluo-4)对细胞进行活细胞成像
 
图1:荧光钙染料Fluo-4标记的睾丸支持细胞的原代培养。钙染料的位置类似于表征细胞内的钙分布。
 
图2:线粒体标记物MitoRed®染色的睾丸支持细胞的原代培养。
 
图3:图1和图2的叠加。观察钙斑和线粒体的共定位情况。
 
图4:睾丸支持细胞的DIC图像。
 
使用共聚焦显微镜Leica TCS SP5(DMI6000 CFS)和Leica LAS AF7000成像软件获取的图像。由德国亚琛工业大学生物II研究所化学感知系Sophie Veitinger博士提供。(地址:德国马尔堡菲利普斯大学细胞生物学和细胞病理学研究所)
对应刊物(非图片来源):
 
活细胞成像中的常见问题
活细胞成像通常适用于培养的细胞系(例如HEK细胞、HeLa细胞)、原代细胞(例如皮肤细胞、神经细胞)、急性制备的组织切片(例如脑切片)或整个器官或生物体。因为细胞被带出其原本“自然”的培养环境并会受到光毒性的影响,所以在实验过程中的首要任务是保持细胞的健康状态。
 
细胞外溶液
不同类型的人工细胞外溶液(林格氏液、人工脑脊液(ACSF))和培养基(例如Leibovitz L-15)用于为细胞提供维持其生理功能所必需离子和其他辅助因子。用于活细胞成像的培养基成分包括从极简单的“含盐”溶液(例如林格氏液)到非常复杂的混合物(例如Leibovitz L-15),种类繁多。
但所有溶液都有一个共同点,即都包含pH缓冲液,因为暴露在环境中之后,会显著改变培养的pH(通常pH 7.2.-7.4)。在很多细胞外溶液中,pH缓冲液通过添加10–20 mM两性离子有机化学品HEPES(2-[4-(2-羟乙基)哌嗪-1-基]乙磺酸)来实现。但对于很多细胞来说,细胞外溶液不能用HEPES或其他化学缓冲液(例如MOPS、TES),因为培养基中缺乏pH缓冲碳酸氢盐会对细胞造成伤害。要解决该问题,必须将二氧化碳输送到细胞外溶液中(二氧化碳与细胞外溶液接触时,会转化为碳酸氢盐)。这可以通过两种方式实现:一种是不断输送气态二氧化碳(通常以碳化物的形式:95%的氧气和5%的二氧化碳)到细胞外溶液中,并不断对细胞进行换液。这种方法通常用于代谢周转率高于细胞增殖的切片制备。
另一种常见的方法是将细胞保存在可调节培养环境气体浓度和温度(在很多情况下)的培养室中。在此类培养物中持续供应5-7%的二氧化碳气体,并且可以严格控制温度。必须根据使用的样品类型和实验的持续时间,来确定化学缓冲的细胞外溶液是否足以使细胞保持良好状态,或者是否需要输送二氧化碳甚至使用培养小室。在很多情况下,化学缓冲溶液即可满足细胞培养和短时实验的要求。,因为急性切片代谢周转率要高得多,通常需要足够的二氧化碳供应。但对于很多细胞类型和长时间成像实验,必须使用培养小室。
 
光毒性
使用荧光染料进行活细胞成像的另一个问题是:激光或高强度电弧放电灯的入射光会损害细胞,即所谓的光毒性。光毒性主要在合成荧光染料被激发时发生。荧光染料被激发后,它们将与分子氧发生反应并产生自由基。为避免光毒性,必须选择尽可能低的光强度和尽可能短的激发持续时间,以将入射高能光剂量保持在尽可能低的水平。在实验设计过程中,还必须考虑实验的持续时间。长时间实验中,通常不需要高帧速率。因此,图像采集的周期频率通常可以从例如每秒10多帧降低到每秒1帧甚至更低。这将显著降低样品上的入射光剂量,从而大幅降低光毒性。
对于低强度荧光信号成像,可以考虑更改图像采集条件设置,比如在大多数情况下,通过将相机功能用作像素合并或提高增益,甚至使用特殊的高灵敏度相机(例如EM-CCD相机)进行成像。这样可以在不增加激发持续时间或光强度的情况下实现更好的信噪比和信号质量,而这两者都会导致更高的光毒性。此外,选择具有长激发波长的荧光基团也可降低光毒性,因为与具有短激发波长的荧光基团相比,传递给样品的能量更低。荧光蛋白(例如绿色荧光蛋白(GFP))的光敏位点位于被多肽包膜覆盖的蛋白质内部,因此通常没有光毒性。
 
漂移
此外,在长时间的活细胞成像实验中,很可能发生焦面漂移的问题,,。可以使用配备有软件或硬件控制自动对焦的成像仪器来避免这种情况。
 
图5:接种了豇豆花叶病毒(CPMV)的豇豆初生叶(Vigna unguiculata "California Blackeye"),在病毒RNA 2中的运动蛋白(MP)和衣壳蛋白(CP)之间的插入GFP基因。GFP以游离蛋白的形式大量表达(因此未融合于MP或CP),并且可以定位在受感染的表皮和叶肉细胞的细胞质和细胞核中。由荷兰瓦赫宁根农业大学,生物分子科学部门分子生物学实验室的Joan Wellink博士及植物科学部门病毒学实验室的Jan van Lent博士提供。
 
 
视频1:用DIOC6染色的活洋葱球细胞,同时进行透射光检测;使用共聚焦显微镜Leica TCS SP2 AOBS RS拍摄,63倍物镜,1.5倍变焦,2倍线平均,扫描分辨率512 x 265,速度每秒4.7帧。
 
视频2:用表达GFP融合蛋白的构建体瞬时转染的COS细胞。细胞溶质蛋白在细胞中呈针状分布。3D堆栈(10.14 µm,14层切)每5秒记录一次,,持续10分钟。本视频使用了堆栈的最大投影。512 x 512像素,双向扫描,变焦2倍,物镜HCX APO L U-V-I 63.0 x 0.90 W UV。由法国伊尔基希细胞生物学研究所成像中心Jocelyn Laporte,提供。
 
用于活细胞成像的方法
可应用于活细胞成像的宽场和共聚焦显微技术的范围也非常广泛。通常,使用复式显微镜和反差对比方法(例如相差和微分干涉相差(DIC)),随时间观察细胞的生长、聚集或运动过程。此外,通常使用体视显微镜或宏观镜对大型标本(例如发育中的斑马鱼胚胎)进行延时成像。在过去数十年中,先进荧光技术变得越来越重要。共聚焦显微镜应用的迅速增加,使生物研究的视角从平面向三维立体转变。
阅读有关活细胞成像技术的更多信息
活细胞成像技术——观察生命的分子水平动态
 
相关链接:细胞生物学、 细胞培养、活细胞成像、类器官和3D细胞培养

了解更多:https://www.leica-microsystems.com.cn/cn/?nlc=20201230-SFDC-011237

2021-12-20 17:18:08 544 0
高效的长时间活细胞拍摄技术

研究细胞球的形成

当对细胞球做延时成像时,会出现某些挑战。由于实验可能持续数天,必须实现长时间的样本存活,这就需要确保接近生理条件。本文描述的活细胞长时间研究使用了全场景显微成像分析平台MICA来研究U343和MDCK细胞球形成。细胞球生长需要最 佳条件,以确保细胞周期和增殖不受干扰。



图像:每孔1000个被稳转了MX1 GFP(绿色)的MDCK细胞形成的3D细胞球。72小时延时拍摄,间隔30分钟。IMC(灰色)。


延时拍摄技术

延时拍摄技术[1,2]是指在一定的时间内,通过显微镜以特定的速率(通常为帧/秒(fps))捕捉标本的图像。延时显微成像技术能够观察到长时间的微观事件,即在几分钟、几小时或几天内发生的事件,在几秒钟、几分钟或几小时内就能看到,广泛用于研究活体标本,如细胞培养物、急性组织样本和模式生物随着时间的推移而生长和发展,以获得更多关于生物过程的见解[3,4]。例如,在胚胎发育、组织修复、免疫系统功能和肿瘤细胞侵袭过程中,细胞迁移对多细胞生物体非常重要。为了准确跟踪细胞和生物体随时间的变化,可以采用“纵向”研究[5] ,即在规定的时间内,在特定的条件下观察同一样本或标本。


细胞球

细胞球是一种三维细胞培养,就像类器官一样,它可以模拟活体组织和器官的生理功能[6]。单层二维细胞培养通常是在基质上平坦生长的细胞,细胞球和其他3D细胞培养则可以大量生长,从而实现细胞-细胞之间的三维相互作用,这更像有机体中的原生组织。这些3D细胞培养可用于研究,以帮助更好地了解更真实的微环境中的细胞。细胞球在神经科学、再生医学以及癌症和心血管研究方面的应用非常有用。


挑战

当用细胞球做延时成像时,会出现某些挑战。由于实验可能持续数天、甚至数周,因此必须在保证接近生理条件的情况下,延长样品的存活时间。荧光标记物的表达必须保持在内源性水平,以防止损害细胞内稳态。


培养基中必须有稳定的营养物质供应。长时间的正确成像要求显微镜成像保持聚焦,并适应不断变化的样品特征,如横向和轴向生长。


实验室可能没有涉及3D细胞培养的延时成像所需的仪器。这种情况下,通常可以通过在多个研究小组和用户间共享设施来解决,但这可能意味着在获得所需仪器之前需要漫长的等待时间。这些挑战可能会导致延迟获得重要的、可量化的结果,而这些结果将影响根本性突破和获得新的见解。



MICA介绍

MICA是全场景显微成像分析平台,它将研究人员需要的都统一在一个完全可控的、高度灵活的环境中,加速显微镜的工作流程,以便更快地获得有意义的科学结果。通过使用这个成像分析平台,您可以从以下方面受益:

  • 人人皆享:轻松设置受控环境条件,匹配聚焦策略,并设置成像条件

  • 机简工作流程:导航式软件设计和一键式操作

  • 触手可及:最 佳的环境条件和多种成像模式(明场、宽场和共聚焦),以配合实验需要,以及水镜和聚焦策略的智能自动化


方法

这项长时间活细胞实验研究是使用MICA来实现,研究了从稳定转染了MX1-GFP或 U343细胞开始的细胞球的形成。细胞球生长需要最 佳的生理条件,确保细胞周期和增殖不受干扰[6,7]。


以往的研究结果表明,生长本身往往与特定的蛋白质或细胞状态和分化的某些标记物的表达相关[6,7]。



图1:图示细胞随时间而形成的细胞球。

MICA在这一关键应用中作为培养系统,在接近生理条件下维持3D细胞培养生长活性,并最 大限度地减少培养基蒸发。MICA可帮助用户测量细胞球的生长并分析蛋白质的表达水平


图2和图3显示了在3D细胞球的形成及其生长的长期延时研究中获得的图像和数据。


图2:对60个孔随时间变化的分析:红色表示经过训练的像素分类器在60小时成像后的某个时间点检测到的区域。


图3:上排:每孔1000个MDCK细胞形成3D细胞球的延时序列中选出的图像,其中细胞用MX1 GFP(绿色)稳定转染。这些图像分别是在接种细胞后第0、11、20、40和61小时的时间点拍摄的。图中所示的红色曲线是对形成的MDCK细胞球状体大小的相应测量。
下排:每孔1000个U343细胞形成3D细胞球的延时序列中选出的图像。
这些图像也是在接种细胞后第0、11、20、40和61小时的时间点拍摄的。
图中所示的绿色曲线是对形成的U343细胞球体大小的相应测量。


参考资料:

1. J.L. Collins, B. van Knippenberg, K. Ding, A.V. Kofman, Time-Lapse Microscopy, Ch. 3 in Cell Culture, Ed. R. Ali Mehanna (IntechOpen, London, 2018) ISBN: 978-1-78984-867-0, DOI: 10.5772/intechopen.81199.

2. Time-Lapse Microscopy: Technique and Significance, Looking at Cell Migration: What is Time-Lapse Microscopy (TLM)? Microscope Master.

3. Live-Cell Imaging Techniques Visualizing the Molecular Dynamics of Life, Science Lab (2022) Leica Microsystems. 

4. T. Veitinger, Introduction to Live-Cell Imaging, Science Lab (2012) Leica Microsystems.

5. R.R. Shields-Cutler, G.A. Al-Ghalith, M. Yassour, D. Knights, SplinectomeR Enables Group Comparisons in Longitudinal Microbiome Studies, Front. Microbiol. (2018) vol. 9, DOI: 10.3389/fmicb.2018.00785.

6. N. Kalebic, P. Kanrai, J. Kulhei, Observing 3D Cell Cultures During Development,  Science Lab (2021) Leica Microsystems. 

7. S.S. Nazari, Generating 3D spheroids with encapsulating basement membranes for invasion studies, Curr. Protoc. Cell Biol. (2020) vol. 87, iss. 1, e105, DOI: 10.1002/cpcb.105.


2022-12-19 21:11:21 122 0
来吧,展示 | 新冠病毒高通量自动化检测解决方案,explorer G3系统帮您实现

针对新冠病毒核酸检测和抗体检测,珀金埃尔默(PerkinElmer)提供全流程整体解决方案,包括试剂、仪器和耗材。模块化设计、可扩展升级的explorer G3自动化整合系统,每天可处理10000人份样品,以及可靠的珀金埃尔默的试剂及耗材提供,可以全天候zui大限度地提高您实验室的新冠病毒检测能力。

explorer G3全自动化整合系统通过自动化和标准化不同地工作流步骤,提高了实验室效率,同时避免了错误并减少了劳动力需求。explorer G3全自动化整合系统根据工作量和人员情况,提供不同程度地自动化解决方案。由于新型冠状病毒在世界范围内的大流行且性质快速变化,实验人员很难预测下一步的测试需求。explorer自动化整合系统的可扩展和模块化特性使它们非常适合这样的情况,确保随着需求的变化,自动化解决方案也可随之变化。

在“执行”完大批量新冠检测的任务后,您的explorer G3全自动化整合系统可用于其它实验流程。珀金埃尔默基于测试、通量和人员需求的优化完整工作流程(包括试剂、仪器和耗材)方面,拥有超过20年的专业经验。

接下来,我们将为您展示一些针对新冠病毒核酸和抗体测试自动化优化的explorer G3全自动化整合系统的案例:

01新冠病毒核酸检测自动化整合系统

 

系统1

 

系统2

端到端的高通量explorer™ G3全自动化整合系统,用于新冠病毒RT-PCR检测、日检测量可达10000人份。

这套全自动化的explorer™ G3整合系统(系统1)为新冠病毒核酸检测提供了一个无人值守、高通量全流程自动化的解决方案。采用3台珀金埃尔默的chemagic 360高通量核酸提取仪(three PerkinElmer chemagic™ 360 extractors.)进行病毒RNA提取,1台JANUS自动化移液工作站(JANUS® G3 PCR workstation)进行QPCR体系构建(SARS-CoV-2 RT-PCR tests),通过整合的2台RT-qPCR仪进行在线样品检测分析。

系统配置

●这套系统是设计用来与JANUS G3原始样品分装工作站(JANUS® G3 Primary Sample reformatter)配套使用

●3台chemagic 360高通量核酸提取仪平行运转,基于聚乙烯醇磁珠技术和自带旋转混匀功能的电磁铁磁棒技术

●整合BioTek® MultiFlo™ FX快速分液器

●自动化微孔板栈,随机存取输入的微孔板载架

●整合JANUS® G3 PCR体系构建工作站,用于RT-PCR微孔板体系构建

●通量:~10,000个样品/24小时

●无人值守处理:系统能够处理多达1900个样本而不需要用户介入

●设计为每周7天、每天24小时的全天候运行

●专用废弃物处理解决方案

●提供硬件和试剂盒

●还有仅配备2台chemagic 360核酸提取仪的较小整合系统方案(系统2)

●通量:~7,000个样品/24小时

●无人值守,按需处理

02新冠病毒RNA提取和PCR微孔板制备:

 

explorer自动化整合系统

这套explorer G3全自动化整合系统提供无人值守自动化新冠病毒核酸提取和RT-PCR体系构建微孔板的制备。然后离线进行RT-PCR扩增及检测。

系统配置

整合2台JANUS G3自动化液体处理工作站(JANUS® liquid handling workstations ),用于自动化样品管到微孔板的样品转移、磁珠和试剂添加、以及PCR反应体系微孔板制备

整合2台chemagic360自动化核酸提取仪(chemagic™ 360 extractors)

自动化微孔板封膜机

自动化微孔板储板栈和随机存取输入的微孔板载架

通量高达每天10,000人份(仅核酸提取)

根据操作需求,操作员提供新的样品管后,系统可持续处理运行

专用废弃物处理解决方案

03新冠病毒抗体检测自动化整合系统

 

高通量新冠病毒ELISA血清学检测系统:explorer™ G3全自动化整合系统

explorer™ G3全自动化整合系统提供基于新冠病毒ELISA血清学检测无人值守自动化检测。

系统配置

整合JANUS® G3自动化液体处理工作站

整合BioTek® 洗板机

多通道分液器

整合PerkinElmer EnVision® 高通量检测酶标仪

随机存取输入的储板架

微孔板储板栈和微孔板培养箱

通量:基于具体实验流程会有不同

 

中等通量新冠病毒ELISA血清学检测系统:explorer™ G3全自动化整合系统

explorer™ G3全自动化整合系统,提供无人值守的基于ELISA血清学检测的自动化检测。

系统配置

整合JANUS® G3自动化液体处理工作站,并整合PlateStak™ 储板栈

整合BioTek® EL406洗板分液机

整合Victor® Nivo™ 多标记检测分析仪(酶标仪)

随机存取输入的耗材摆放载架

通量:基于具体不同实验流程会有所不同

 

台式explorer™ G3全自动化整合系统,新冠病毒ELISA血清学检测

这套台式explorer™ G3自动化整合系统,提供无人值守自动化新冠病毒ELISA血清学检测。

系统配置

根据工作流程,确定整合Zephyr® G3液体处理工作站或 JANUS® G3液体处理工作站

整合 BioTek® EL406洗板分液机

整合INHECO® MP微孔板孵育器

整合Victor® Nivo™多标记检测仪(或其它类似酶标仪)

随机存取输入的耗材摆放载架

关于我们的机器人工作流程自动化解决方案,我们的使命是为客户提供量身定制的解决方案,以满足您的确切需求。上面描述的整合系统是部分应用示例。我们的销售和应用支持专家可根据您的应用需求,与您进行深入沟通交流,进行定制化的设计,以满足您的确切应用需求。

仅供科研,不用于诊断。

了解更多应用资料和产品信息,扫描下方二维码,获取珀金埃尔默explorer G3相关资料,还可获得精美礼物。(从所有参与者中随机抽取)

 

扫描参与调研:

 


2020-09-18 13:46:00 523 0
超分辨高精度显微镜3D成像模块

超分辨高精度显微镜3D成像模块

光学显微镜凭借其非接触、无损伤等优点,成为生物学家研究细胞功能结构、蛋白网络结构、DNA等遗传物质、细胞器以及膜结构等应用必不可少的工具,然而衍射极限的存在,使得人们无法清晰地观察到横向尺寸小于200nm、轴向尺寸小于500nm的细胞结构。二十一世纪初期,具有纳米尺度分辨率的超分辨光学显微成像技术的出现,使得研究人员可以在更高的分辨率水平进行生物研究。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得;对透镜制造技术提出了一定要求的同时,也限制了观测的视野;日益复杂的设备使得操作和维护也越来越困难等。


为解决上述问题,美国Double Helix Optics公司提出了纳米级分辨率成像的新概念-“SPINDLE”,不仅突破了衍射极限,还可以实现三维成像,可捕捉到小至横向尺寸10 nm、轴向尺寸15 nm的细节。在该技术中,SPINDLE模块被安装在显微镜和ccd或相机之间,无需改变现有成像系统设置。基于特殊设计的相位掩模版,从工程化点扩散函数 (E-PSF)出发,使用螺旋相位掩模板来控制景深、发射波长和精度,结合3DTRAX软件对3D图像进行重建和分析,可在不需要扫描的条件下即时捕获 3D 信息,得到无与伦比的深度和精度3D图像,横向精度可达20nm, 轴向精度可达25nm,成像深度可达20um。当与其他工具和技术,包括STORM、PALM、SOFI、光片显微、宽场、宽场显微、TIRF、FRET等一起使用时,可释放巨大的潜力,适用于活细胞、固定细胞和全细胞成像、单分子、粒子跟踪和粒子计数等应用。


图1:SPINDLE2双通道显微镜模块,用于同时多色、多深度3D成像


SPINDLE2可以被很容易地安装到现有显微镜和CCD或相机之间,内置旁路模式可轻松返回到非3D光路,是实现单发超分辨和3D宽场成像的理想解决方案。


图2:非洲绿猴肾细胞的3D 图像,微管和肌动蛋白分别标记,两种颜色同时成像


在SPINDLE模块中,最核心的是经过特殊设计的相位掩模板,其尺寸和设计需和光学系统和成像条件相匹配。这些相位掩模板将单一物体发出的光分裂成两个独立的旋转的光瓣,类似于双螺旋。两瓣的中点对应物体发光源的横向位置,两瓣的夹角对应发光源的轴向位置。由于旋转180°时光斑可以保持聚焦,因此可以高精度地获取发光“点”的深度信息。收集的数据由许多这些在不同方向上与物体横向和轴向位置相对应的分离良好的点组成。经过对这些详细的目标点数据集处理和图像重建创建,即可得到超高分辨率原始物体清晰的三维结构。


图3:工程化相位掩模板通过每帧成像更大的体积来节省时间和存储空间,并降低感光度


丰富多样的相位掩模板库,包括双螺旋,单螺旋,EDOF,四足,和多色设计以提供大的控制和灵活性。用户可依据深度范围、波长和其他光学参数选择合适的相位掩模版以满足的深度-精度平衡。


3DTRAX® 软件用于计算每个粒子的z位置,运行专有算法以自动进行3D定位,以‹20 nm的深度和分辨率渲染高精度3D图像,用于单分子定位和跟踪。对漂移进行自动校正并生成直观的绘图,同时保持高数据质量。


图4:3DTRAX®是非常易于使用的斐济插件


使用适用于 Windows、MacOS 和 Linux 的库集成到您的工作流程或 OEM 仪器中,以 ThunderSTORM 或双螺旋文件格式保存图像并导出文件以供进一步分析,专有的反卷积算法可以在不损失精度的情况下重建全细胞图像。


图5:从左到右:非洲绿猴肾细胞的细胞骨架,小鼠胚胎成纤维细胞中的微管,小鼠胚胎成纤维细胞细胞核中的复制DNA的3D超分辨图像


超分辨显微镜3D成像模块应用

超分辨显微成像和3D粒子跟踪技术为生物学和生物医学研究、药物发现、材料科学研究和工业检测打开了一个充满可能性的新世界。双螺旋工程技术具有高达传统显微镜30倍的成像深度,其为超分辨成像带来了精度-深度平衡。在3D粒子追踪应用中,双螺旋工程带来的扩展的深度可以实现更长粒子轨迹的捕获。


在生命科学领域,双螺旋光工程正在从癌症和免疫学到传染病和神经科学的生命科学的突破。研究人员通过使用SPINDLE模块发现了新的细胞结构和亚细胞的相互作用。研究神经退行性疾病的科学家们能够看到以前从未见过的压力颗粒核3D图像。同样,研究免疫学的研究人员已经能够重建整个T细胞。


在药物开发领域,研究人员已经可以看到和跟踪药物化合物的真正工作原理,而不是简单地模拟新的化合物。双螺旋光工程实现了在成像和单粒子跟踪(SPT)领域的新突破,随着追踪分子的能力跨越更大的景深(高达20um),双螺旋可以记录比以往任何时候更长的轨迹,使得识别先导化合物和加快药物发现变得更加容易。


在材料科学领域,借助3D纳米成像和粒子跟踪技术,无论是金属、半导体、陶瓷、聚合物还是纳米材料研究,双螺旋技术都可以让您看到材料的结构、流动性等性能。精密成像与深度扩展相结合,让你对粒子动力学有了新的认识。有了更多的数据,就可以更好地预测材料在任何给定应用领域中的性能。


在工业检测领域,双螺旋工程可实现纳米尺度的三维检查。现在你可以在从微芯片到像素级的产品中发现微小的缺陷和其他功能缺陷。纳米级精度的检测,可以提高质量控制,节省时间,降低成本,提高产量和跟踪质量。

引文:[1]金录嘉, 何洋, 瞿璐茜,等. 新型超分辨显微技术的研究进展[J]. 光电产品与资讯, 2018, 9(3).


如您对SPINDLE感兴趣,请随时与我们联系!


关于昊量光电: 

昊量光电  您的光电超市!


上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。其代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。

我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!


相关文献:

(1)Anastasiia Misiura, et. al., “Single-Molecule Dynamics Reflect IgG Conformational Changes Associated with Ion-Exchange Chromatography,” Analytical Chem., 2021

(2)Laura Hoppe Alvarez, et. al., “Controlling microgel deformation via deposition method and surface functionalization of solid supports,”

Phys. Chem. Chem. Phys., 2021,23, 4927-4934

(3)Xilin Yang, et. al., “Deep-Learning-Based Virtual Refocusing of Images Using an Engineered Point-Spread Function,” ACS Photonics, 8, 7, 2174–2182, June 2021

(4)Anish R. Roy, et. al., “Exploring cell surface-nanopillar interactions with 3D super-resolution microscopy,” BioRxiv, June 2021S. Li, J. Wu, H. Li, D. Lin, B. Yu, and J. Qu, “Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection,” Optics Express, vol. 26, no. 18, p. 23585, 2018.


您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。


2022-02-28 17:32:12 178 0
x光片成像原理
 
2017-10-06 14:34:46 557 1
LS18光片显微镜成像案例--超长脊柱样本3D重构

众所周知,脊柱是身体的支柱,那么你了解脊柱具体由哪些结构组成吗?脊柱与脊髓之间又有什么关联呢?



一.脊柱的结构与功能



脊柱分颈椎、胸椎和腰椎,颈椎有生理前曲,胸椎后曲,腰椎前曲。简单来说,脊柱从侧位看,呈S状,此形状可以很好地吸收人体走路、跑跳带来的冲击和震荡。


图1 脊柱结构图



脊柱由脊椎骨及椎间盘构成,是一相当柔软又能活动的结构。随着身体的运动载荷,脊柱的形状可有相当大的改变。脊柱的活动取决于椎间盘的完整,相关脊椎骨关节突间的和谐。


脊柱具有支持躯干、保护内脏、保护脊髓进行运动的功能。 脊柱内部自上而下形成一条纵行的脊管,内有脊髓。
 



二.脊髓的结构与功能


脊髓(Madulla spinalis)是zhongshu神经的低级部分,由胚胎时期神经管的后部发育而成,仍保持节段性。脊髓发出脊神经分布于躯干和四肢,是躯干和四肢的初级反射zhongshu;内含许多上、下行传导束,与脑部各级神经有着广泛的联系,是联系躯体和脑部的枢纽,在正常情况下,脊髓的活动总是在脑的控制下进行的。
脊髓位于脊柱的椎管内,上端与脑相连,下端与DY腰椎下缘平齐。脊髓是脑与躯体、内脏之间的联系通道。
(1)脊髓的结构
从脊髓的横切面可以看出,脊髓包括灰质和白质两部分。灰质在ZY,呈蝶形;白质在灰质的周围。白质内的神经纤维在脊髓各部分之问以及脊髓和脑之间,起着联系作用。


图2 脊髓结构图




(2)脊髓的功能
反射功能:人的脊髓灰质里有许多低级反射,可以完成一些基本的反射活动,如膝跳反射、排便反射等。但是,脊髓里的神经是受大脑控制的。
传导功能:脊髓能对外界或体内的刺激产生有规律的反应,还能将这些刺激的反应传导到大脑。反之,脑的活动也要通过脊髓才能传递到身体各部位。因此脊髓是脑与躯干、内脏之间联系的通道。
 



三.平铺光片显微镜下的脊柱连脊髓样本3D重构
LS18光片显微镜不仅可以对脑,心,肝,脾,肺,肾,卵巢等软的小组织样本进行成像,它同样可以对超过2cm的超长样本组织进行成像,如连脊髓,小鼠骨架,小鼠小肠,小鼠长脊柱等等。如下图3所示,为小鼠的脊柱样本血管成像3D重构结果。该脊柱整体长约6cm,成像分辨率为横向3.3µm,纵向7µm,整个样本成像时长约7小时。

 图 3 小鼠长脊柱血管整体3D重构




图4 局部细节展示(XY面层切)




图5 局部细节展示(XZ面层切)



锘海生命科学不仅自主研发出专门对大样本组织成像的平铺光片显微镜,同时还依托于显微镜测样服务工作积累了丰富的组织透明化、组织免疫荧光染色及成像经验,甚至我们的工程师还精心优化了透明化样本制备配方,自主研发出快速GX锘海组织透明化试剂盒,如图6所示,它可适用于不同的样本组织类型,大大提高样本组织透明化的效率,从更专业的角度为广大科研工作者制定一套完整的服务解决方案,助力每一位生命科学工作者完成使命!锘海生命科学,助力科研人真正地回归科学!

图6 锘海组织透明化试剂盒




锘海一站式科研服务——让科研变得更简单
锘海生命科学为广大客户提供专业的生物组织透明化、免疫染色、平铺光片显微镜3D荧光成像、数据分析、数据存储等一站式科研服务,旨在通过JZ、快速、多样化的科研服务为每一位生命科学工作者提供个体化/定制化的解决方案。



了解更多锘海LS18平铺光片显微相关信息请联系 021-37827858、13818273779(微信同号)


2021-08-16 15:57:30 423 0
一款适用于透明组织成像的多功能平铺光片显微镜


生物组织的高分辨率3D荧光成像在亚细胞、细胞和组织水平上为基因表达、细胞形态和细胞在组织中的分布研究搭建了桥梁。组织透明化方法将生物组织透明,并结合新型的3D荧光成像技术实现了组织结构可视化。


尽管这种结合有诸多好处,但在3D组织成像应用中仍存在挑战:(1)在对厘米级样本进行微米级或更高分辨率成像时,传统光片显微镜成像效率不高;(2)传统光片显微镜难以兼容所有的组织透明化方法透明的样本;(3)不能实时校正由不同成像液的折射率变化引起的偏差,优化不同样品的成像性能;(4)显微镜仪器校准程序复杂且较为困难。


2020年11月3日,西湖大学高亮实验室团队在Cell Reports上发表文章A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues介绍了一款具有半自动校准能力的多功能平铺光片显微镜,它能够对所有组织透明化方法透明的样本组织进行多色快速3D成像,并且成像的空间分辨率达微米级(4×4×10μm3)甚至亚微米级(0.3×0.3×1μm3)。另外,通过组织膨胀技术,平铺光片显微镜的分辨能力可提高至小于100nm(70×70×200 nm3)。


文章指出,平铺光片技术很好地解决了上述问题。不同于其他的光片显微镜,平铺光片显微镜不仅在透明化大组织样本的3D成像上呈现更好的效果,而且可以大范围内更加简单的优化和调节成像品质,可以更方便的应用在不同领域。


那么,与其他的光片显微镜相比,平铺光片显微镜有哪些优点呢?


1) 和传统的光片显微镜相比,相同的成像时间里,采用平铺光片显微镜成像样本可提高空间分辨率以及成像效率。

2)通过变换不同NA的检测物镜,放大倍数,以及调整激发光片,平铺光片显微镜可以实现对厘米级的组织样本进行从微米级到亚微米级空间分辨率的成像,而利用组织膨胀技术可以进一步提高成像分辨率。

3)通过空间光调制器对激发光片进行相位调制,用于创建和优化样品照明的平铺光片。

4)显微镜具有半自动校准功能,保证了成像的准确性、可靠性和易用性;

5)显微镜与所有的组织透明化方法兼容,适用于不同形状,不同机械强度的组织成像。

6)不同的透明化组织样本可以在几分钟内快速更换成像;

7)可以对透明化组织进行多分辨率级别、各向同性、多色三维成像;



凭借上述优点,平铺光片显微镜对组织样本进行3D成像的结果又如何呢?


1)实现微米级空间分辨率的3D组织成像


具有近乎各向同性的微米级空间分辨率的3D组织成像非常适合在细胞水平上可视化组织结构。如图1所示,3小时内获取的小鼠脑血管网络展示了识别到的几乎所有的毛细血管。成像结果可对脑血管结构提供清晰的拓扑结构阐释。根据成像结果提取到的数据显示大脑皮层中这些穿透性的血管可通过毛细血管与位于胼胝体区域的海马内小静脉或小动脉相连接。因此,平铺光片显微镜优秀的3D成像能力可以辅助了解整脑不同脑区的血管网络分布。


图1 不同透明化方法的小鼠器官在微米级空间分辨率下的三维成像



2)多色3D组织成像能力


多色3D成像技术对研究组织内部不同细胞器的相对分布有很大帮助。平铺光片显微镜具有对所有波段的激发光进行相位调制的功能,可以确保不同激发光束共线校正,从而确保不同颜色通道采集图像的精确配准。本文通过双色标记的小鼠乳腺成像来检测显微镜的多色3D成像能力。图2(A-Y)小鼠乳腺双色成像结果表明可以清晰分辨位于乳腺管内层的腔细胞,及乳腺管外层的基底细胞。这两者的相对表达体现了乳腺导管和末端芽的不同分布模式,结果表明了乳腺细胞组成的空间异质性。

图2(Z-GG)展示了对人类的乳腺癌组织和相邻的正常乳腺组织进行成像。从实验表达结果可以看出,肿瘤组织失去了原有腺泡结构仅有异常的管状结构,并显示出具有利于癌细胞浸润的密集血管脉络系统。该患者的淋巴结肿大并伴有可疑的浸润细胞,这与脉管系统异常的表征相符。该组实验表明组织透明化和高分辨率3D组织成像技术在病理学应用中的价值。


图2 多色3D组织成像



3)亚微米级空间分辨率的3D组织成像


   为观察亚细胞组织结构,将平铺光片显微镜的检测物镜提升至1.0NA,照明物镜提升至0.28NA,产生1um薄光片对样本进行成像。如图3所示,成像结果呈现出高倍显微镜具有很好的亚细胞神经元结构的分辨能力,我们可以观察到兴奋性锥体神经元、神经元轴突上清晰可辨的树突棘和单个神经元的形态。


图3 亚微米级空间分辨率的3D组织成像



4)组织膨胀的亚微米级空间分辨率的3D组织成像


组织膨胀技术提供了一种比显微镜更高的空间分辨率来分辨组织结构的解决方案。实验研究了平铺光片显微镜与组织膨胀技术结合的成像能力。Thy1-eGFP小鼠脑透明化使用组织膨大技术将样本各向同性扩大5倍,成像空间分辨率为2um×2um×5um,那么同等的空间分辨率根据5倍膨胀比例,映射到对实际样本的分辨能力是0.4um×0.4um×1um。成像结果如图4所示,小鼠大脑海马区细胞和亚细胞神经元结构清晰可见,尽管海马区细胞密度较高,依旧可以分解出单个神经元轴突和树突棘。同时,如图4虚线框内标识可以观察到一些神经轴突的神经间的轴浆运输。


图4 组织膨胀的亚微米级空间分辨率的3D组织成像



5) 采用组织膨胀技术实现100nm以下空间分辨率的3D组织成像


平铺光片显微镜通过采用更高NA的检测物镜和更薄的光片对膨胀组织成像,能够达到100nm以下的空间分辨率,从而实现对组织结构的进一步解析。

图5采用0.8NA的检测物镜以及更薄的激发光片展示了更精细的神经结构。研究结果表明,大脑神经网络十分复杂,纳米尺度空间分辨率的3D成像对完全解析大脑神经网络是非常必要的。



图5  100nm以下空间分辨率的3D组织成像



6) 实现多分辨率尺度的三维组织成像


 平铺光片显微镜的优势是可以为其他生物组织的研究提供帮助。图6展示了平铺光片显微镜对透明化的真涡虫以从微米到亚微米多种空间分辨率成像的结果。整体成像结果展示了干细胞在真涡虫内的整体分布,局部高空间分辨率成像结果展示了真涡虫内干细胞组织以及细胞与细胞之间的相互作用关系。因此,平铺光片显微镜可以更好地研究真涡虫干细胞的分布和功能。类似的优点同样适用于其他生物研究,例如秀丽隐杆线虫,黑腹果蝇,斑马鱼等。


图6  100nm以下空间分辨率的3D组织成像


结论

综上所述,本文开发了一款多功能平铺光片显微镜,具有ZY的多色3D成像能力,能够以微米级至100nm以下的空间分辨率对厘米级的透明化样本组织进行快速3D成像。该显微镜兼容所有的组织透明化方法,灵活适应不同的应用。它还具有通过相位调制实现半自动对准的能力,操作简单可靠。因此,平铺光片显微镜使得3D透明化组织成像在生物医学研究中更加可靠及可行。

 

上述平铺光片技术已由锘海生命科学商业化——NuohaiLS18平铺光片显微镜,同时,我们依托LS18光片显微镜搭建了锘海生命科学一站式服务平台为广大客户提供专业的生物组织透明化、免疫染色、平铺光片显微镜3D荧光成像、数据分析、数据存储等一站式科研服务,旨在通过JZ、快速、多样化的科研服务为每一位生命科学工作者提供个体化/定制化的解决方案。


原文献链接:

 https://doi.org/10.1016/j.celrep.2020.108349 



2021-03-22 10:39:34 440 0
一款适用于透明组织成像的多功能平铺光片显微镜


生物组织的高分辨率3D荧光成像在亚细胞、细胞和组织水平上为基因表达、细胞形态和细胞在组织中的分布研究搭建了桥梁。组织透明化方法将生物组织透明,并结合新型的3D荧光成像技术实现了组织结构可视化。


尽管这种结合有诸多好处,但在3D组织成像应用中仍存在挑战:(1)在对厘米级样本进行微米级或更高分辨率成像时,传统光片显微镜成像效率不高;(2)传统光片显微镜难以兼容所有的组织透明化方法透明的样本;(3)不能实时校正由不同成像液的折射率变化引起的偏差,优化不同样品的成像性能;(4)显微镜仪器校准程序复杂且较为困难。


2020年11月3日,西湖大学高亮实验室团队在Cell Reports上发表文章A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues介绍了一款具有半自动校准能力的多功能平铺光片显微镜,它能够对所有组织透明化方法透明的样本组织进行多色快速3D成像,并且成像的空间分辨率达微米级(4×4×10μm3)甚至亚微米级(0.3×0.3×1μm3)。另外,通过组织膨胀技术,平铺光片显微镜的分辨能力可提高至小于100nm(70×70×200 nm3)。


文章指出,平铺光片技术很好地解决了上述问题。不同于其他的光片显微镜,平铺光片显微镜不仅在透明化大组织样本的3D成像上呈现更好的效果,而且可以大范围内更加简单的优化和调节成像品质,可以更方便的应用在不同领域。


那么,与其他的光片显微镜相比,平铺光片显微镜有哪些优点呢?


1) 和传统的光片显微镜相比,相同的成像时间里,采用平铺光片显微镜成像样本可提高空间分辨率以及成像效率。

2)通过变换不同NA的检测物镜,放大倍数,以及调整激发光片,平铺光片显微镜可以实现对厘米级的组织样本进行从微米级到亚微米级空间分辨率的成像,而利用组织膨胀技术可以进一步提高成像分辨率。

3)通过空间光调制器对激发光片进行相位调制,用于创建和优化样品照明的平铺光片。

4)显微镜具有半自动校准功能,保证了成像的准确性、可靠性和易用性;

5)显微镜与所有的组织透明化方法兼容,适用于不同形状,不同机械强度的组织成像。

6)不同的透明化组织样本可以在几分钟内快速更换成像;

7)可以对透明化组织进行多分辨率级别、各向同性、多色三维成像;



凭借上述优点,平铺光片显微镜对组织样本进行3D成像的结果又如何呢?


1)实现微米级空间分辨率的3D组织成像


具有近乎各向同性的微米级空间分辨率的3D组织成像非常适合在细胞水平上可视化组织结构。如图1所示,3小时内获取的小鼠脑血管网络展示了识别到的几乎所有的毛细血管。成像结果可对脑血管结构提供清晰的拓扑结构阐释。根据成像结果提取到的数据显示大脑皮层中这些穿透性的血管可通过毛细血管与位于胼胝体区域的海马内小静脉或小动脉相连接。因此,平铺光片显微镜优秀的3D成像能力可以辅助了解整脑不同脑区的血管网络分布。


图1 不同透明化方法的小鼠器官在微米级空间分辨率下的三维成像



2)多色3D组织成像能力


多色3D成像技术对研究组织内部不同细胞器的相对分布有很大帮助。平铺光片显微镜具有对所有波段的激发光进行相位调制的功能,可以确保不同激发光束共线校正,从而确保不同颜色通道采集图像的精确配准。本文通过双色标记的小鼠乳腺成像来检测显微镜的多色3D成像能力。图2(A-Y)小鼠乳腺双色成像结果表明可以清晰分辨位于乳腺管内层的腔细胞,及乳腺管外层的基底细胞。这两者的相对表达体现了乳腺导管和末端芽的不同分布模式,结果表明了乳腺细胞组成的空间异质性。

图2(Z-GG)展示了对人类的乳腺癌组织和相邻的正常乳腺组织进行成像。从实验表达结果可以看出,肿瘤组织失去了原有腺泡结构仅有异常的管状结构,并显示出具有利于癌细胞浸润的密集血管脉络系统。该患者的淋巴结肿大并伴有可疑的浸润细胞,这与脉管系统异常的表征相符。该组实验表明组织透明化和高分辨率3D组织成像技术在病理学应用中的价值。


图2 多色3D组织成像



3)亚微米级空间分辨率的3D组织成像


   为观察亚细胞组织结构,将平铺光片显微镜的检测物镜提升至1.0NA,照明物镜提升至0.28NA,产生1um薄光片对样本进行成像。如图3所示,成像结果呈现出高倍显微镜具有很好的亚细胞神经元结构的分辨能力,我们可以观察到兴奋性锥体神经元、神经元轴突上清晰可辨的树突棘和单个神经元的形态。


图3 亚微米级空间分辨率的3D组织成像



4)组织膨胀的亚微米级空间分辨率的3D组织成像


组织膨胀技术提供了一种比显微镜更高的空间分辨率来分辨组织结构的解决方案。实验研究了平铺光片显微镜与组织膨胀技术结合的成像能力。Thy1-eGFP小鼠脑透明化使用组织膨大技术将样本各向同性扩大5倍,成像空间分辨率为2um×2um×5um,那么同等的空间分辨率根据5倍膨胀比例,映射到对实际样本的分辨能力是0.4um×0.4um×1um。成像结果如图4所示,小鼠大脑海马区细胞和亚细胞神经元结构清晰可见,尽管海马区细胞密度较高,依旧可以分解出单个神经元轴突和树突棘。同时,如图4虚线框内标识可以观察到一些神经轴突的神经间的轴浆运输。


图4 组织膨胀的亚微米级空间分辨率的3D组织成像



5) 采用组织膨胀技术实现100nm以下空间分辨率的3D组织成像


平铺光片显微镜通过采用更高NA的检测物镜和更薄的光片对膨胀组织成像,能够达到100nm以下的空间分辨率,从而实现对组织结构的进一步解析。

图5采用0.8NA的检测物镜以及更薄的激发光片展示了更精细的神经结构。研究结果表明,大脑神经网络十分复杂,纳米尺度空间分辨率的3D成像对完全解析大脑神经网络是非常必要的。


图5  100nm以下空间分辨率的3D组织成像



6) 实现多分辨率尺度的三维组织成像


 平铺光片显微镜的优势是可以为其他生物组织的研究提供帮助。图6展示了平铺光片显微镜对透明化的真涡虫以从微米到亚微米多种空间分辨率成像的结果。整体成像结果展示了干细胞在真涡虫内的整体分布,局部高空间分辨率成像结果展示了真涡虫内干细胞组织以及细胞与细胞之间的相互作用关系。因此,平铺光片显微镜可以更好地研究真涡虫干细胞的分布和功能。类似的优点同样适用于其他生物研究,例如秀丽隐杆线虫,黑腹果蝇,斑马鱼等。


图6  100nm以下空间分辨率的3D组织成像


结论

综上所述,本文开发了一款多功能平铺光片显微镜,具有ZY的多色3D成像能力,能够以微米级至100nm以下的空间分辨率对厘米级的透明化样本组织进行快速3D成像。该显微镜兼容所有的组织透明化方法,灵活适应不同的应用。它还具有通过相位调制实现半自动对准的能力,操作简单可靠。因此,平铺光片显微镜使得3D透明化组织成像在生物医学研究中更加可靠及可行。

 

上述平铺光片技术已由锘海生命科学商业化——NuohaiLS18平铺光片显微镜,同时,我们依托LS18光片显微镜搭建了锘海生命科学一站式服务平台为广大客户提供专业的生物组织透明化、免疫染色、平铺光片显微镜3D荧光成像、数据分析、数据存储等一站式科研服务,旨在通过JZ、快速、多样化的科研服务为每一位生命科学工作者提供个体化/定制化的解决方案。


原文献链接:

 https://doi.org/10.1016/j.celrep.2020.108349 



2021-03-18 13:16:44 434 0
强悍智能!奥林巴斯DP28和DP23显微镜相机全新上市,实现工业成像简化


全新DP系列相机具备能够简化工业显微镜成像的一系列智能功能和JZ的色彩精确度。具有4K分辨率的DP28相机能够提供无噪点的高分辨率图像,而DP23相机则在全高清分辨率与便捷功能之间实现平衡,几乎对所有工业成像应用均可实现出色的价值。

 

显微镜相机用于检查制造材料的质量,确保其不存在缺陷。清晰的图像和准确的色彩还原是用户能够发现细微缺陷的必备关键性能。奥林巴斯DP28和DP23相机所具备的出色图像质量和智能功能有助于快速有效执行成像任务。


(DP28拍摄)


以舒适的方式在屏幕上查看图像


DP系列显微镜相机让用户不必通过显微镜目镜观察,而是以舒适的方式在屏幕上观看图像。为了获得平滑、超清晰的4K图像,DP28相机配备了890万像素CMOS传感器和全局快门。640万像素的DP23相机在进行快速样品扫描时能够以每秒60帧的速度拍摄高清图像,并可提供高达FN25的视场,让用户一次即可查看更多样品,并用很短时间就可将小尺寸图像拼接在一起。*

 


智能功能让分析和检查工作得到简化


这款相机的功能让普通成像任务更加轻松,用户只需将注意力集中在屏幕上,不必花费时间进行调整。关键功能包括可在长时间曝光成像期间以高帧率在弱光条件下获得出色图像质量的快速实时功能,以及快速识别样品哪些区域处于聚焦状态的聚焦峰值功能。*

 

有效的远程协作


包括图像、注释和分析数据的所有关键数据均可在本地或远程显示和共享。另外这两款相机还可与奥林巴斯Stream™2.4.4版软件兼容进行复杂或高级图像分析,从而进一步简化您的工作流程。**

 

强悍的功能、JZ的色彩精确度以及更宽视场的4K(DP28)或全高清(DP23)分辨率让DP28和DP23相机能够提供高质量的图像并快速完成常规成像任务。


*在与0.35X TV(DP23)配合使用时。

**奥林巴斯Stream与远程共享功能不兼容。


2021-02-22 16:32:33 571 0
ibidi活细胞成像|为什么要用活细胞成像来研究细胞的5大理由!

  细胞生物学是生命科学的一门学科。顾名思义,它致力于研究生物。单凭这一事实就足以成为研究细胞自然生存状态的理由。当然,活细胞成像还有其他深层次的原因。在本篇文章中,我们列举了用延时显微镜研究活细胞是有意义的五大很好的理由。

  

  背景

  

  活细胞成像允许在一定时间内在显微镜下对细胞进行体内观察。各种显微镜技术适用于活细胞成像:例如,可以采用无标记的技术,如相差,DIC,或干涉测量法,也可以依靠荧光显微镜,利用荧光标记标记和可视化细胞亚结构、分子或蛋白质。当然,活细胞成像也面临挑战,在建立活细胞图像实验时需要考虑某些要求。最重要的是,必须确保显微镜配备了一个stage top 培养箱,能够提供理想的环境,使细胞在一段时间内保持存活和健康。

 

图1.A:活细胞成像过程中需要考虑和控制的环境参数

 

 

图1.B:倒置显微镜的台顶培养箱示意图

  

  参数和环境条件是此类实验的重要部分,我们将在以后的公众号中讨论。如果您有兴趣,可以在本篇文章中查看更多相关内容。在此我们已经介绍了基本知识,接下来我们将继续深入探讨为什么您应该使用活细胞成像来研究您的细胞:

 

 

 

  1.避免固定过程中的人工制品

  

  细胞通常在显微镜观察前固定(如免疫荧光),以保存在逼真的状态。多年来,许多不同的化学和物理程序已被优化和建立,以保持原始样品的质量。然而,固定过程会对细胞造成损害(当然在这个过程之后,它们会死亡),并不可逆转地改变其组织、结构和形态(细胞器收缩、蛋白质定位错误等)。然而,活细胞成像可以让我们研究活细胞。这意味着他们应该展示他们的自然形态,这仍然会受到荧光标签、激光等的影响,但这就像环境条件一样,是一个不同的状况。

  

  2.观察和分析动态过程

  

  活细胞成像使我们能够观察整个细胞群、单个细胞甚至亚细胞水平的动态事件。当固定细胞将其锁定在特定时间点的特定(行为或结构)状态时,对活细胞的显微镜观察可以洞察整个动态过程。基于功能性细胞的检测,如损伤和迁移(图2)或趋化实验是活细胞成像应用的很好的例子。这些分析使得研究细胞对化学(趋化性)或机械(伤口愈合)刺激的反应成为可能。

  

 

  

图2:使用ibidi Stage Top孵育系统的活细胞成像显示了伤口愈合和迁移试验中MCF7细胞的间隙闭合。相差;10倍物镜。

  

  3.实时跟踪细胞变化

  

  活细胞显微镜是实时了解细胞随时空变化的一种有价值的方法,而不是依赖于固定细胞的端点的分析结果。通过使用延时视频显微镜对细胞进行更长时间的跟踪,可以捕捉到结构重排的动态(如图3,感受趋化刺激后细胞骨架的极化), 或使用固定细胞可能会错过的瞬时细胞性活动(如,有丝分裂期间的染色体分离)。

  

  

图3:应用趋化梯度后,表达LifeAct的原代树突状小鼠细胞中肌动蛋白动力学的活细胞成像

 

  4. 研究单分子动力学、定位和相互作用

  

  先进荧光标记和成像技术的发展,如光脱色荧光恢复技术(FRAP)、荧光寿命成像显微技术(FLIM)和荧光共振能量转移技术(FRET),使活细胞成像过程中单分子定位、动力学和相互作用的观察和分析成为可能。

  

  FRAP可以测量活细胞内荧光标记分子和蛋白质的迁移率。FLIM通过测量附着的荧光团的寿命来提供有关细胞分子分布及其环境的信息。

  

  利用FRET,人们可以通过检测两个分子在纳米级相互接近时所附荧光团的相互作用来测量活细胞中两个分子的直接相互作用。

  

  5. 从单个实验中获取更多信息

  

  总的来说,如果您进行活细胞成像,您可以从单个实验中获得比从固定细胞成像更多的信息。这是因为活细胞成像使人们能够跟踪分子动力学和动力学,并提供了您感兴趣的一个更大、更全面的细胞过程图像。

  

  对固定样本的分析通常只提供某个细胞性活动的快照,而跟踪整个动态过程使人们能够从单个实验中测量更多参数,并得出更多不同的结论。

  

  如您有兴趣了解更多关于活细胞成像的知识,请关注我们公众号活细胞成像应用相关内容。也可以向我们索要相关资料。

  

  活细胞成像应用相关内容:

                 


2022-11-15 17:23:36 206 0
什么是活细胞成像,怎样才能得到一张好的活细胞成像图

•  什么是活细胞成像?  

活细胞成像(live cell imaging)统称为捕捉活的、活动状态的细胞图像的技术,这些细胞图像可以是单个静态图像,也可以是延时系列图像。相应地,活细胞成像的应用可以分为两大类:

❶ 细胞在自然状态下的图像记录。

❷ 实时观察和记录细胞、组织或整个生物体的动态过程。


•  观察分析活细胞时面临的挑战  

▷ 在相对较短的时间内采集大量信息。

▷ 要保持细胞保存在可调节培养环境气体浓度和温度(在很多情况下)的培养室中。

▷ 激发光源会损害活细胞。

▷ 细胞焦面漂移,无法聚焦。

▷ 需要使用配备有软件或硬件控制自动对焦的成像仪器来避免这种情况。

Revolution全自动显微镜成像系统

Revolution全自动显微镜成像系统部件高度集成内置,节省空间,避免繁琐调试及维护;触屏式操控观察工作站,界面直观简洁,易于学习,方便使用。Revolution全自动显微镜成像系统的光源采用高能LED光源,自动荧光切换把光毒降低。

▌智能化全自动多功能系统:

▶ TimeLapse延时摄影:可以根据设定在特定时间内完成特定间隔时间和特定的拍照张数。

▶ 独有的Hyperscan快速成像:30帧高速成像,可以在几秒钟内完成上百张照片的采集。

▶ Multi-well Point孔板导航成像:不限定孔位大小,只需输入参数就可以自动完成多孔或单孔采集。

▶ Focus Map自定义多点聚焦:可以自动完成不同层面的自动聚焦。

▶ Z-Stacking多层扫描大景深成像:完成多层面大景深成像。

▶ DHR智能实时数字化降噪:实时完成反卷积计算,得到清晰图像。

▌ECHO INCUBATOR为活细胞观察提供一个稳定而灵活的培养环境

ECHO INCUBATOR采用紧凑的一体式设计,方便用户快速安装和拆卸。箱体结构透明和大型前置开门设计,可为用户提供清晰的观察视野并方便操作样本。采用无风扇对流加热和循环热空气方案,在消除振动的同时并可防止外部灰尘进入您的样品和仪器光学元件。提供稳定的细胞生长环境,确保适合的细胞培养条件,使细胞处于zuijia生长状态。


2022-08-17 10:05:32 269 0
锘海LS18平铺光片显微镜成像案例-多个小鼠器官TH染色神经信号成像

神经系统是机体内对生理功能活动的调节起主导作用的系统。近年来,随着显微成像技术的快速发展,神经细胞和神经网络的研究已成为学术科研领域的热门研究。为寻求对神经组织更好的染色方案,锘海LS18测样服务中心对小鼠多个器官的神经组织进行透明化TH染色预实验,并通过LS18平铺光片显微镜上的快速扫描成像,得到了以下结果。 在神经科研领域中,对神经走向的研究,离不开对神经细胞和神经网络的观察。锘海LS18测样服务部,致力于为客户带来优质的服务,团队对小鼠的多个器官组织都进行了神经TH(Tyrosine Hydroxylase)染色,总结得到更好的染色方法,对客户样本负责,更是对自己负责!  

锘海LS18平铺光片显微镜

 
如今,我们已完成多种小鼠器官组织在LS18平铺光片显微镜上的快速扫描成像,现分享近期成像结果。 

 

  • 小鼠肺神经染色,3.2x快速成像结果展示,如图1及图2所示:

 

图1 小鼠肺神经成像-volume展示 

图2 小鼠肺神经成像-200um层切局部高清展示

 

  • 小鼠肝脏神经染色,3.2x快速成像结果展示,如图3及图4所示:

 

图3 小鼠肝脏神经成像-volume展示

 

图4 小鼠肝脏神经成像-200um层切局部高清展示

 

 

  • 小鼠心脏神经染色,3.2x快速成像结果,如图5及图6所示:

 

图5 小鼠心脏神经成像-volume展示

 

图6 小鼠心脏神经成像-200um层切局部高清展示


 

  • 小鼠肾脏神经染色,3.2x快速成像结果,如图7及图8所示:

 

图7 小鼠肾脏神经成像-volume展示

 

图8 小鼠肾脏神经成像-200um层切局部高清展示

 

锘海生命科学凭借平铺光片专利技术,自主研发生产LS18平铺光片显微镜 (Tiling Light sheet Microscope) 是一款适用于各类透明化大组织样品及活体模式生物长时程动态监测的选择性平面照明显微镜,可在细胞级甚至亚细胞级水平上快速、低光毒性获得多色荧光标记结构的精准3D空间分布。 作为生产商,我们不仅提供成像仪器,亦提供科研服务平台。为各地高校、科研院所、医院及企业提供从 组织透明化 → 免疫荧光染色 → 大样品高分辨3D显微成像 → 大数据分析一体化服务

 

另依托公司测样服务中心丰富的实验经验和LS18平铺光片显微镜的成像优势,现已推出自主研发的锘海透明化试剂盒除此之外,免疫荧光染色试剂盒也即将问世,敬请期待! 锘海旨在通过精准、快速、多样化的研发服务为每一位生命科学工作者提供个体化/定制化解决方案。 

  往期推荐:
锘海LS18-平铺光片显微镜 

锘海LS18平铺光片显微镜高分辨成像案例-小鼠脑神经成像

锘海生物科学“平铺光片显微镜3D荧光成像”发文章赢奖金

LS18光片显微镜成像案例--超长脊柱样本3D重构

锘海LS18平铺光片显微镜高分辨率血管成像重磅来袭!


 联系我们: 

电话:021-37827858、13818273779(微信)

邮箱:info@nuohailifescience.com

地址:上海市松江区顺庆路650号1幢102、202室 


2022-03-02 10:47:09 426 0
微流控用于活细胞成像的细胞培养

利用微流控技术在微流控芯片通道内进行实时的细胞培养对很多生物学、医学等领域的工作人员来讲是一个重大的挑战和机会,通过该技术可以大规模的降低实验耗材消耗,提高实验转化效率,模拟实际生物环境下的细胞生长行为等。在科学研究和工业应用中,活细胞成像的细胞培养都具有较大的应用前途,那么现在有没有一款或一套合适的仪器来做细胞培养实验呢?答案是有的,Elveflow微流控灌注套装(Perfusion Pack)结合ALine公司的Microslides便可以完成细胞培养实验。




本文介绍的活细胞成像的细胞培养具有以下优势
(1)不再有介质耗尽
        该系统使用连续灌注,为细胞创造稳定的环境,无需任何手动操作。

(2)实时药物接触
        注入多达10种不同的液体。编程注射序列并自动化您的实验以便获得更好的重复性。适用于3D细胞培养和药物筛选。

(3)没有剪切应力
        MicroSlides旨在避免对细胞施加剪切应力,细胞不直接进入流动。

细胞培养可以兼容的生物

ADHERENT MAMMALIAN CELLS


YEASTS


WORM EMBRYOS


细胞培养用的实验仪器组件


细胞培养实验装置连接示意图


Tip:介质或药物切换
还可以进行培养基转换以使细胞暴露于不同的药物或条件。

Tip:不再有气泡
可以在MicroSlide之前添加气泡捕集器,以确保气泡不会进入芯片。

如何使用微流控活细胞灌注套装?

1、在开始实验之前,用70%乙醇冲洗MicroSlide,储液器以及所有导管和连接器以确保无菌。请确保在生物安全罩下执行以下所有步骤以避免污染。



2、用培养基填充储液器并将储液器连接到流量控制器



3、将储液池连接到MicroSlide



如何填充MicroSlide?

1、将MicroSlide连接到Perfusion Pack后,如图所示倾斜设备。使用Elveflow智能界面软件ESI激活压力泵直到全部的三个储液槽都被填充1/4后再关闭压力泵。



2、用微量移液管向每个孔中加入10-30μL样品



3、从MicroSlide上取下粘合剂衬垫并用盖子密封,然后用拇指压下密封盖子。



如何在芯片上进行细胞培养?



在实验过程中,MicroSlide和储液器可放置在培养箱或环境室内,而OB1和流量传感器则留在室外。可以使用较长的导管将仪器放在培养箱的外面,如下图所示。


2019-08-19 17:24:22 622 0
盖玻片活细胞成像专用培养皿有哪些规格?
 
2016-08-10 02:41:25 425 2

10月突出贡献榜

推荐主页

最新话题