仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

Nature亮点 | Phenoptics™组织微环境分析方案深度解析肿瘤免疫细胞分型

珀金埃尔默 2019-07-05 18:05:22 482  浏览
  •       Z近数十年以来肿瘤的免疫ZL相关研究取得了革命性的突破,特别是基于PD-1、CTLA-4等类似的免疫检查点YZ剂的ZL方案表现尤为突出。但是即便如此,肿瘤的免疫ZL领域仍然面临巨大的挑战,比如治LX果的不确定性、患者反应的不可预估性、免疫ZL耐药抵抗及检测生物标志物缺乏等都制约了对肿瘤患者的jing准有效ZL。

     

    Balkwill F R, Capasso M, Hagemann T. The tumor microenvironment at a glance.

          当前大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将是破除肿瘤免疫ZL障碍的关键所在。肿瘤免疫微环境在肿瘤发生、侵袭、转移及ZL耐受过程中占据重要位置,细化免疫微环境的细胞免疫分型,切实有效的分子分型定量研究是指导肿瘤jing准ZL的基础,也是在jing准医学时代背景下亟需解决的难题。

          独特的PhenopticsTM多光谱组织微环境景观分析方案融合了Opal多色荧光样品标记Vectra多光谱成像inForm智能组织定量分析技术,可以wan美的实现传统分析方案难以解决的技术难题,从而更好的实现对于肿瘤患者的jing准诊断和ZL。

     

          2019年6月26日,Nature杂志在线发表了巴黎大学Jérôme Galon教授研究组题为Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文充分利用了PhenopticsTM组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程在侵袭前病变组织和肿瘤微环境的细胞分型改变以及相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的发SF展进行调控和jing准ZL,为提高肿瘤免疫ZL的有效率提供了新的技术思路和方法。

     

    Nature. 2019 Jun 26. doi: 10.1038/s41586-019-1330-0

          该研究工作的ling导者Jérôme Galon教授一直致力于利用PhenopticsTM组织微环境分析方案进行肿瘤免疫ZL研究和新的免疫ZL组合策略方案开发。附图来自Jérôme Galon教授基于Opal多色荧光标记技术获取的肿瘤组织免疫微环境描绘图片,为肿瘤免疫诊断和jing准ZL提供重要的参考依据。

     

    来源:https://www.epo.org/learning-events/european-inventor/finalists/2019/galon.html

          全新的PhenopticsTM组织微环境分析方案可以实现在组织切片样本上实现多达9色的靶点抗原荧光标记和检测,并且进行多种类型细胞的分型定量研究深度挖掘组织微环境所蕴含的生物学信息,从而为肿瘤的免疫学研究和jing准ZL提供可靠依据。

     

    Phenoptics™  组织微环境分析方案—Opal 9色荧光标记示例图

    关于珀金埃尔默:

    珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。

    了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn

     


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

Nature亮点 | Phenoptics™组织微环境分析方案深度解析肿瘤免疫细胞分型

      Z近数十年以来肿瘤的免疫ZL相关研究取得了革命性的突破,特别是基于PD-1、CTLA-4等类似的免疫检查点YZ剂的ZL方案表现尤为突出。但是即便如此,肿瘤的免疫ZL领域仍然面临巨大的挑战,比如治LX果的不确定性、患者反应的不可预估性、免疫ZL耐药抵抗及检测生物标志物缺乏等都制约了对肿瘤患者的jing准有效ZL。

 

Balkwill F R, Capasso M, Hagemann T. The tumor microenvironment at a glance.

      当前大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将是破除肿瘤免疫ZL障碍的关键所在。肿瘤免疫微环境在肿瘤发生、侵袭、转移及ZL耐受过程中占据重要位置,细化免疫微环境的细胞免疫分型,切实有效的分子分型定量研究是指导肿瘤jing准ZL的基础,也是在jing准医学时代背景下亟需解决的难题。

      独特的PhenopticsTM多光谱组织微环境景观分析方案融合了Opal多色荧光样品标记Vectra多光谱成像inForm智能组织定量分析技术,可以wan美的实现传统分析方案难以解决的技术难题,从而更好的实现对于肿瘤患者的jing准诊断和ZL。

 

      2019年6月26日,Nature杂志在线发表了巴黎大学Jérôme Galon教授研究组题为Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文充分利用了PhenopticsTM组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程在侵袭前病变组织和肿瘤微环境的细胞分型改变以及相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的发SF展进行调控和jing准ZL,为提高肿瘤免疫ZL的有效率提供了新的技术思路和方法。

 

Nature. 2019 Jun 26. doi: 10.1038/s41586-019-1330-0

      该研究工作的ling导者Jérôme Galon教授一直致力于利用PhenopticsTM组织微环境分析方案进行肿瘤免疫ZL研究和新的免疫ZL组合策略方案开发。附图来自Jérôme Galon教授基于Opal多色荧光标记技术获取的肿瘤组织免疫微环境描绘图片,为肿瘤免疫诊断和jing准ZL提供重要的参考依据。

 

来源:https://www.epo.org/learning-events/european-inventor/finalists/2019/galon.html

      全新的PhenopticsTM组织微环境分析方案可以实现在组织切片样本上实现多达9色的靶点抗原荧光标记和检测,并且进行多种类型细胞的分型定量研究深度挖掘组织微环境所蕴含的生物学信息,从而为肿瘤的免疫学研究和jing准ZL提供可靠依据。

 

Phenoptics™  组织微环境分析方案—Opal 9色荧光标记示例图

关于珀金埃尔默:

珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。

了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn

 


2019-07-05 18:05:22 482 0
JAMA热点 | 肿瘤免疫微环境分析方案助力PD-1/PD-L1LX预测

      近年来肿瘤免疫ZL取得了一系列突破性成果,成为继肿瘤手术ZL、放化疗及靶向ZL之外的革命性ZL手段,特别是基于PD-1、CTLA-4等免疫检查点YZ剂的ZL方案表现尤为突出。即便如此,肿瘤的免疫ZL仍面临巨大挑战,如LX不确定性、总体有效率低、耐药抵抗及检测生物标志物缺乏等都制约了对患者的jing准ZL。

 

      大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将会是突破免疫ZL障碍的关键所在,独特的Phenoptics分析方案可以wan美的解决这一难题。该方案可以实现对肿瘤样本内多达9种生物标志物的原位标记和描绘,同时实现多种生物标志物的联合分析及空间分布分析,从而实现生物学数据的深度挖掘,为肿瘤jing准诊疗提供重要依据。   

接下来跟随小编一起来看几篇发表在杂志的相关研究论文,一探究竟吧!

1、JAMA Oncology

      2019年7月18日来自美国约翰霍普金斯大学、耶鲁大学、范德堡大学及西北大学等科研单位联合在肿瘤学权威期刊JAMA Oncology(IF 22.4)发布了一项肿瘤学免疫诊疗重要研究成果(Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade A Systematic Review and Meta-analysis),系统阐述了利用Phenoptics免疫标志物mIHC/IF多重免疫组化(即Opal多重免疫组化)分析方案对于肿瘤微环境进行深度分析,其结果对比传统检测手段对于LX预测有着更为突出的优势,可以更好地为肿瘤的诊断和免疫ZL提供可靠依据。

 

文章对比了广泛应用的几种肿瘤学生物标志物检测方案,如传统PD-L1免疫组化检测、TMB肿瘤突变负荷分析、GEP基因表达谱分析及mIHC/IF多重免疫组化检测等方案与临床案例的诊断准确性及免疫ZL应答率进行了深度整合分析。

 

      研究人员通过Meta分析统计了2013年-2018年间公开发表及重大学术会议公布的肿瘤免疫ZL及免疫检查点YZ剂56篇研究案例,包含 10种以上不同类型的肿瘤样本总计8135份的完整临床数据(包括黑色素瘤、肺癌、尿路上皮癌、头颈癌、结肠癌、肝细胞肝癌、宫颈癌、胃癌、默克细胞瘤、肾细胞癌等),系统关联分析了肿瘤ZL应答率和生物标志物的表达水平,根据其比值权重依据敏感性和准确度统计出sROC曲线并分析计算曲线下面积AUC数据进行准确度评估用于判断该检测方案的敏感度和特异度,这两项指标与肿瘤的免疫ZL应答率具有高度相关性。

 

      数据统计分析显示,mIHC/IF多重组化检测方案的数据结果权重分析条件下AUC=0.79显著优于其他分析方案,PD-L1传统免疫组化IHC检测(AUC=0.65,P<0.001),GEP基因表达谱分析(AUC=0.65,P=0.003),TMB肿瘤突变负荷分析(AUC=0.69, P=0.049),非权重分析AUC=0.872依然显著高于其他分析方案的统计数据。而在使用多个分析方案进行多参数联合评估条件下(如综合PD-L1免疫组化和GEP+TMB综合分析),其AUC将提高到0.74,而mIHC/IF免疫微环境综合分析方案AUC仍高于该联合方案(AUC=0.79),说明mIHC/IF多重组化检测方案对于肿瘤的诊断和免疫ZL具有Z佳的预测价值。

 

2、Nature

      近来关于肿瘤微环境分析与免疫ZL相关研究成果接连发表,2019年6月26日Nature发表了巴黎大学Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用Phenoptics组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的jing准ZL。

 

3、Nature Immunology

      2019年7月8日来自美国希望之城癌症ZX的科研人员在Nature Immunology发文同样阐述了Phenoptics肿瘤微环境分析方案在乳腺癌的诊断和ZL方面具有极大的潜力和价值(Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer),可以有效的对乳腺癌病人ZL后的复发风险进行预测,从而为患者的jing准诊疗提供重要的数据支持。

 

4、Nature Communications

      2018年度诺贝尔奖生理学或医学奖得主James Allison教授早在2017年领导的一项研究就应用Phenoptics多重免疫组化方案深度分析了胰 腺癌病例肿瘤组织微环境与临床预后信息具有极高的相关性,该研究成果发表在Nature子刊 Nature Communications (Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer),而相关的研究方案将为肿瘤的免疫ZL提供新的诊疗依据从而更好的给肿瘤患者制定有效的ZL方案。

 

总结:独特的Phenoptics多光谱组织微环境景观分析方案融合了Opal多重免疫组化染色、Vectra多光谱成像和inForm智能组织定量分析技术,可以wan美实现传统肿瘤检测方案难以解决的技术难题,从而更好的实现对于肿瘤患者的jing准诊断和ZL。

网络讲座

讲座时间:

2019年8月27日12:00 PM(北京时间)

讲座题目:

Comprehensive Meta-analysis of Biomarker Technologies for Predictive Response of PD-1/PD-L1 Checkpoint Therapies

主讲人:

霍普金斯大学 Steve Lu

Akoya Biosciences Cliff Hoyt

内容简介:

详细分享Phenoptics分析方案的特点和技术优势,包括多种生物标记技术预测PD-1/PD-L1免疫ZL的预测指标分析,免疫细胞亚群定量蛋白检测的重要性以及疾病状态下细胞空间分布差异比较与应用,用于稳定且高通量临床研究的多重免疫荧光方法的Z新进展等内容。

会议地址:

https://www.labroots.com/ms/webinar/akoya-biosciences-series-comprehensive-metaanalysis-biomarker-technologies-predictive-response-pd-1

参考文献

1. Wang L, Simons D L, Lu X, et al. Connecting blood and intratumoral T reg cell activity in predicting future relapse in breast cancer[J]. Nature immunology, 2019: 1.

2. Lu S, Stein J E, Rimm D L, et al. Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis[J]. JAMA oncology, 2019.

3. Carstens J L, De Sampaio P C, Yang D, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer[J]. Nature communications, 2017, 8: 15095.

4. Mascaux C, Angelova M, Vasaturo A, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis[J]. Nature, 2019: 1.

5. Soo R A, Lim J S Y, Asuncion B R, et al. Determinants of variability of five programmed death ligand-1 immunohistochemistry assays in non-small cell lung cancer samples[J]. Oncotarget, 2018, 9(6): 6841.

关于珀金埃尔默:

珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。

了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn

 


2019-08-02 16:51:38 449 0
肿瘤免疫与肿瘤微环境研讨会

  台风施虐下的科研执着!肿瘤免疫与肿瘤微环境研讨会圆满落幕

  经过连日的精心筹备,由Bio-Techne与PerkinElmer共同主办,广州睿贝医学科技有限公司协办的肿瘤免疫与肿瘤微环境研讨会于2018年9月16日在广州花园酒店圆满结束。肿瘤免疫研究领域的专家、学者顶着chao强台风“山竹”的肆虐,齐聚一堂,共同度过这次“干货满满”的分享盛会。

  在半天的议程中,会议聚焦肿瘤免疫研究与ZL以及肿瘤微环境研究的新思路、新方法,从RNA到蛋白多靶点深度解析肿瘤,共同探讨肿瘤免疫ZL的科研成果向临床转化的方式方法。

  会议精彩瞬间剪影

  Bio-Techne大中华区董事总经理裴立文先生在本次会议上,分享了Bio-Techne品牌的发展历程、在ZG的战略布局以及主营业务,并提出Bio-Techne力求推动生命科学发展到ji致的服务宗旨。

  Bio-Techne 大中华区董事总经理裴立文先生致辞

  PerkinElmer DAS华南区总经理林森先生回顾了近年来肿瘤免疫领域的突破性进展,并提出PerkinElmer组织原位微环境单细胞分型定量的ZL解析方案,以切实帮助学者们在肿瘤免疫领域实现研究突破。

  PerkinElmer DAS华南区总经理林森先生致辞

  本次会议邀请到业界4位知名大咖进行了精彩报告,深度回顾肿瘤免疫研究及ZL领域的现状、瓶颈与突破性进展,无私地分享自己的科研成果与研究思路,共觅医学转化的破晓之光。与会老师们在开放自由的氛围下,共享临床与科研资源,为接下来的合作奠定了坚实基础。

  l 精彩报告回顾

  主讲嘉宾

  廉哲雄:自身免疫性肝病的免疫学发病机制

  华南理工大学医学院、生命科学研究院副院长

  廉老师为我们深度回顾了该实验室近些年在自身免疫性肝病的研究,并高瞻远瞩地提出科研成果向临床转化的意义,让与会的老师们受益匪浅。

  廉哲雄教授作精彩报告

  许大康:An integrative approach to narrow gaps to understanding of Immunosuppression in the pancreatic tumor-microenvironment

  上海交通大学医学院检验系研究ZX主任,医学博士,博士生导师,曾任Monash大学分子与转化医学系研究室主任。

  许老师就肿瘤微环境的解析问题进行了深入的分享与探讨,无私地向我们回顾了近年来自己的研究成果与研究思路,同时表达出对未来科研向临床转化的重视和期许。

  许大康教授作精彩报告

  周鹏辉:Tumor Microenvironment Impeded Cancer Immunotherapy

  现任中山大学肿瘤FZZX,华南肿瘤学国家ZD实验室教授、博士生导师,先后入选中山大学“百人计划二期”青年杰出人才,中组部“青年千人计划”,长期从事肿瘤免疫学和肿瘤免疫ZL研究。

  周老师向我们全面介绍了细胞ZL这一近些年的热点研究领域,及领域中的突破性进展,并结合自己正在从事的走在细胞ZL领域前沿的研究,向与会者展示出先进的科研临床转化理念与方案,令与会者获益良多。

  周鹏辉教授作精彩报告

  欧阳能太:RNAscope在肿瘤PD-L1表达的临床应用探讨

  中山大学附属孙逸仙纪念医院细胞分子诊断ZX主任

  欧阳老师结合自己强大专业的病理学临床诊断经验积累,同与会者就临床组织水平研究与诊断的方案进行深入探讨,并从临床病理诊断的角度为诠释了肿瘤微环境研究的价值和意义。

  欧阳能太教授作精彩报告

  本次研讨会上与会专家分享真知灼见,引起热烈的讨论与共鸣。

  相关资料下载:

  Vectra 系列-组织微环境景观分析

http://www.yiqi.com/technology/file_105067.html

  PerkinElmer肿瘤免疫微环境景观分析方案

http://www.yiqi.com/technology/file_105066.html


2019-06-10 13:42:19 294 0
白血病免疫分型用流式细胞仪怎么建立方案
 
2018-11-28 05:54:53 434 0
基于免疫细胞的肿瘤诊断新方案

癌症仍然是威胁人类健康Zda的敌人之一,虽然目前针对癌症的ZL方案有了很大的发展,但是癌症治愈难并且ZL费用高的现状仍然不会在短时间内得到改善。因此,除了在ZL阶段应对癌症外,早期的诊断检出仍然是降低肿瘤死亡率的重要手段。

除常规筛查外,内源性肿瘤标志物的检测成为当前发展的新兴技术,其中包括CTC,ctDNA以及肿瘤外泌体等的检测。内源性标志物检测的难点在于体内标志物会快速清除且检测背景高以及体内无法富集都是导致它们应用难以推广的重要原因。

为解决这个难题,美国斯坦福大学医学院的San极v Gambhir博士团队对免疫细胞中的巨噬细胞进行改造,成功在小鼠肿瘤模型中实现肿瘤细胞的早期检测和跟踪标记。

 

其主要策略是:通过对巨噬细胞进行改造,在肿瘤诱导产生的M2型巨噬细胞的启动子后面标记上生物发光的标记。当在肿瘤环境中,可以更加诱导巨噬细胞向M2型分化,并启动荧光素酶基因的表达。利用该策略可以检测出转移瘤以及皮下瘤的发生。

 

目前,这项技术可用于检测直径小至4毫米大小的肿瘤,不仅更加优于常规肿瘤体积检测,而且与常见生物标志物检测相比,如体外RLU方案,CEA指标检测方案 ,ctDNA,qtPCR方案等检测,表现出更高的灵敏度。

 

参考文献

San极v S. Gambhir et al. Engineered immune cells as highly sensitive cancer diagnostics. Nature Biotechnology (2019).


2020-08-11 13:19:54 179 0
ibidi实验方案|肿瘤细胞2D侵袭检测方案

AnielloFederico*,JochenUtikalSkinCancerUnit,GermanCancerResearchCenter(DKFZ),69120Heidelberg,Germany.*Correspondingauthor.E-mailaddress:a.federico@dkfz-heidelberg.de


为了研究肿瘤微环境影响下肿瘤细胞的运动性和侵袭特性,建立了体外2D侵袭方案。这种2D侵袭方案是一种共培养试验,在这种情况下,是由肿瘤和基质细胞(例如成纤维细胞)组成的。一旦两种细胞类型接触,在不同的条件下评估侵袭成纤维细胞单层的肿瘤细胞的数量,在我们的研究中,我们在模拟实体肿瘤微环境中发现的条件,例如与基质细胞(成纤维细胞)的相互作用以及成纤维细胞释放的可溶性因子(Nnetu等,2012)。我们使用A375黑色素瘤细胞系和真pi成纤维细胞进行了此测定。黑色素瘤细胞激活成纤维细胞,继而维持肿瘤细胞的生长,恶性转化和耐药性(Flach等,2011)。然而,在刺激所测试的抗ai化合物后,我们发现与成纤维细胞直接接触的黑素瘤细胞显示出运动能力受损并且未能侵袭成纤维细胞层。


材料和试剂

1. GFP-A375细胞系(ATCC)

2. 番茄皮成纤维细胞(从健康患者中分离)

3. MEF细胞培养基

4.PBS(Sigma-Aldrich;D8537)

5.胰蛋白酶-EDTA溶液(Sigma-Aldrich;T3924)

6. 台盼蓝溶液(Sigma-Aldrich;93595)

7.DMSO(CarlRoth;A994.2),在0.1%最终浓度下使用

8.MithramycinA(BioTrend;10-2085-5mg),在300nm浓度下使用,用DMSO稀释

仪器设备

1. 层流净化罩

2. 12/24孔多孔板(GreinerBio-One)

3. 台式离心机

4. 细胞计数器

5. 2孔插件(ibidi: 80209)/预置2孔插件培养皿(ibidi:81176)

6.细胞培养管

7. 涡旋

8. 镊子

9. 光学显微镜

10. 荧光显微镜

11. NIS-Elements软件

ibidi:81176

实验流程

01. 将GFP-A375和番茄成纤维细胞系稳定地保存在MEF培养基中,在37°C和5%C02加湿培养箱中。

02. 当细胞达到亚融合度(约80%融合度)时,在带有PBS的通风橱中清洗它们,以去除死细胞和碎片。

03. 在培养箱中用胰蛋白酶-EDTA溶液胰蛋白酶消化细胞约5分钟,然后添加MEF培养基以阻止反应。

04. 将细胞悬浮液收集在15ml细胞培养管中,并用台式离心机(1500xg,5´,RT)短暂离心。

05. 将细胞重新悬浮在新鲜培养基中;将一体积的细胞悬液与另一体积的台盼蓝溶液混合,用细胞计数器计数活细胞。

06. 在MEF缓冲液中以4x105细胞/ml的浓度稀释细胞。

07. 在多孔板上,在每个孔的中间放置一个Culture-Insert2孔(2孔培养插件)。

08. 用75µl(3x104细胞)FP-A375细胞填充插入物一侧,并用番茄成纤维细胞填充另一侧。用移液器上下混合插入物中的细胞,以确保细胞完全分布。

09. 将多孔板放在培养箱中,放置过夜。

10. 第二天,在镊子的帮助下,小心地从每孔中取出培养基和插件,并用PBS清洗。

11. 小心除去PBS,然后加入新鲜的MEF培养基。

12. 用光学显微镜检查GPF-A375与Tomto成纤维细胞之间产生的间隙的闭合状态。

13. 一旦每个孔中的间隙完全闭合,请使用荧光显微镜和成像软件获取荧光图像。确保肿瘤细胞尚未侵入成纤维细胞单层。

14. 小心地除去培养基,并在控制组孔中添加培养基+0.1%PBS,在处理组孔中添加培养基+300nM丝裂霉素A。将板放在培养箱中24小时(处理孵育时间)。

24小时后,在荧光显微镜下重新采集共培养孔,以评估治疗组与对照组(绿色荧光细胞散布在红色标记层上)的肿瘤细胞侵袭行为的任何变化(图2)。

图1:2D侵袭系统的示意图

图2:2D侵袭检测的荧光图像

将黑素瘤细胞和成纤维细胞共培养,然后暴露于300nmMithramycinA(或DMSO)。24小时后,评估侵袭成纤维细胞层的肿瘤细胞的数目。A375细胞显示出大规模的侵袭行为,受到MithramycinA治疗的损害。比例尺:500μm。

备注:

1.此处描述了MEF培养基组成(参考文献1)。

2.此文仅供参考。

3.此实验方案来自ibidi的实际用户,更多详情可联系本文作者。

参考文献:

1.MithramycinAandmithralogEC-8042inhibitSETDB1expressionanditsoncogenicactivityinmalignantmelanoma. FedericoA,SteinfassT,LarribèreL,NovakD,MorísF,NúñezLE,UmanskyV,UtikalJ.MolelucarTherapy-Oncolytics2020;doi: https://doi.org/10.1016/j.omto.2020.06.001 (Methoddescribedinthisprotocolwasincludedinthispublishedarticle).

2.Theimpactofjammingonboundariesofcollectivelymovingweak-interactingcells. NnetuKD,KnorrM,KäsJ,ZinkM.NewJournalofPhysics2012;doi:https://doi.org/10.1088%2F1367-2630%2F14%2F11%2F115012

3.Fibroblastscontributetomelanomatumorgrowthanddrugresistance. FlachEH,RebeccaVW,HerlynM,SmalleyKS,AndersonAR.Molecular pharmaceutics2011;doi:10.1021/mp200421k

2022-08-09 15:01:18 182 0
高深度空间代谢组学助力肿瘤微环境研究

肿瘤的发展除了与癌细胞自身基因突变导致的恶性增殖有关以外,还与肿瘤微环境息息相关。在癌症中,正常组织中和谐的细胞相互作用关系被破坏,原本保护正常细胞生存的微环境在肿瘤细胞的影响下,逐渐演变成适应肿瘤生长的条件。针对肿瘤微环境的检测和表征研究也可为癌症治 疗提供新的思路。


目前空间多组学技术已用于研究几种类型癌症中肿瘤免疫微环境的转录组、蛋白质组和代谢组,从这些方法获得的数据已与免疫组化和多参数分析相结合,以产生癌症进展的标记物。传统分析技术受样品空间分辨率以及分析灵敏度的限制,无法精 准获取靶向部位,而对其中特异代谢物的差异表征就更加困难。组织切片伴随着显微镜技术等的发展而得到广泛的应用,而激光显微切割 (LMD, laser microdissection) 技术(如使用Leica LMD6/7)可以方便地对特定的组织区域进行精确分离(图2)。结合高灵敏度的液质联用检测技术,基于SCIEX的ZenoTOF® 7600 系统,将空间定位准确的微区细胞代谢谱进行全面准确的表征。代谢谱是免疫微环境的重要调节因子,可能通过影响癌细胞的增殖潜能和适应环境而发挥作用。代谢特征的异质性似乎有助于肿瘤免疫微环境的异质性。


图1. 激光显微切割-空间多组学质谱分析流程


肿瘤微区样品制备

由制备好的肿瘤组织切片样本置于激光显微切割载物台,确定好焦距平面后,将视野移动到待切割的细胞区域(先通过H&E染色的平行样本确定肿瘤组织分区),在调节好相关参数后开始进行切割。通过对样本分别进行水溶性代谢物和脂溶性代谢物的提取,进而进行基于液质联用系统的全面的代谢组学分析。


图2. 组织切片样本用于激光显微切割分离体制备。经过苏木精-伊红(HE)染色确定组织切片中不同类型的细胞区域(左)包括原位癌、浸润癌和癌旁细胞,在平行的未染色组织切片中的相应位置进行激光显微切割获得分离体(右)。


Leica 激光显微切割系列产品利用UV激光可直接从组织切片制备分子生物分析所需的样品,可用于基因组学、转录物组学、蛋白质组学、代谢物组学和活细胞应用等的快速、精确且高质量的切割。


图3. 徕卡激光显微切割流程(通过重力作用收集感兴趣区域)


代谢物全面表征

组织细胞中代谢物成分复杂多样,且有较多同分异构体,仅有准确的高分辨一级无法对化合物进行确证。针对大量样本,SCIEX OS软件可自动进行峰提取和搜库,通过一级质量数、同位素丰度和二级碎片的匹配对样本中的代谢物进行鉴别(图3),使筛查流程快速准确。在代谢组学的样本中共鉴定173个化合物,包括氨基酸类、核苷类、吲哚类、脂肪酸类等。


图4. 代谢物鉴定界面示例以样本中鉴定到的脯氨酸(Proline)为例,Proline分子式为C5H9NO2,检测到的MS信号与理论质荷比相比,质量数偏差为-0.3ppm,同位素丰度比与理论值偏差为1.3%,MSMS与代谢物库中Proline的标准谱图匹配度为100,以此可判定鉴定到的信号为Proline。


在脂质组学分析样本中共鉴定到550个脂质化合物,基于ZenoTOF® 7600 系统特有的电子活化解离(EAD)碎裂模式,可以鉴定出其中一些脂质化合物的精细结构,如脂肪酸链连接的具体位置(sn1或sn2)以及连接的不饱和脂肪酸双键的具体位置(图4);对于样本中检测到的脂质化合物包括固醇酯类、神经酰胺类、溶血磷脂胆碱类、磷脂胆碱类、溶血磷脂乙醇胺类、磷脂乙醇胺类、磷脂肌醇类、磷脂丝氨酸类、鞘酯类、甘油二酯类、甘油三酯类。


图5. 脂质化合物精细结构鉴定示例。以甘油三酯TG (18:1/18:1/18:1)为例,在EAD碎裂模式下,化合物[M+Na]+峰可以产生特征的碎片离子,帮助解析甘油三个羟基各自所连接的脂肪酸组成,以及在高质荷比区域产生的连续CH2断裂碎片确定不饱和键的位置(C9和C10间为双键)。


差异代谢物分析

在质控样本(quality control, QC, 所有样本等体积混合,整个分析批次中每6个样本穿插一针QC样本进样)中,化合物峰面积RSD%不超过30%(n=8),在代谢组学样本中共检出100个代谢物,脂质组学样本中共检出502个代谢物,并将这些化合物在所有的样本包括原位癌组织、浸润癌组织、癌旁组织进行峰面积提取。


将获得的各种组织中化合物含量信息进行生物统计学分析,以浸润癌组织v.s.癌旁组织为例,共找到84个差异代谢物(图5)。经过后续进一步生物学验证,确定的差异代谢物可以帮助开展癌细胞在空间定位及异质性的精 准区分工作,更好的理解例如肿瘤转移的起源和发展、侵袭能力、对药物的敏感性等方面的特点,从而制定个体化的精 准治 疗方案。


图6. 浸润癌组织v.s.癌旁组织中的差异代谢物热图。通过统计学分析,包括t-test的p值小于0.05以及PLSDA计算的VIP值不小于1作为筛选条件,获得了84个差异代谢物。


总结

通过对组织切片进行激光显微切割获取空间定位准确的微量样本,并与SCIEX ZenoTOF® 7600 系统相结合,实现微量细胞水溶性和脂溶性代谢物的全面表征以及高灵敏度组学分析。可将此方案应用于其他组织切片样本,助力空间多组学研究的开展。


致谢:

感谢厦门大学生命科学学院林树海教授及其课题组成员华铮翼、姚博对方案中组织切片和样本制备的支持;

感谢丹纳赫生命科学平台徕卡显微系统公司高天龙、连其林对显微切割技术的支持。


空间多组学研究LMD平台:

徕卡激光显微切割系统

Leica LMD7



激光显微切割(LMD)是一种适用于精确制备样品的技术。在许多研究领域,它是获得纯净的、单一的后续实验起始材料的先决条件。在基因组学、转录组学、微阵列、二代测序、生物芯片和蛋白质组学等领域中,需要使用这项高精度技术以进行有意义的分析。Leica LMD系列用UV激光直接从组织切片制备分子生物分析所需的样品。随着创新方法和仪器的不断开发,激光显微切割在其他领域的应用也日益广泛,如活细胞研究、气候研究和电子显微镜的玻片雕刻。现在,研究人员正在以前所未有的水平使用LMD来最 大化影响他们的研究。


徕卡显微系统为用户提供了一种精确、高度选择性的激光显微切割方法,可用于如下各种应用:

快速、精确地分离超纯细胞和细胞群;

用于基因组学、转录物组学、蛋白质组学、代谢物组学和活细胞应用的高质量切割;

方便地使用激光制备活细胞和其他样品;

标记和可追溯显微镜下的样品。


空间多组学研究质谱平台:

多重碎裂高分辨质谱

SCIEX ZenoTOF® 7600 系统



ZenoTOF® 7600 系统于2021年推出即获得国际“分析科学家创新奖”之首,集成了多项前沿新技术,包括:


能实现更高二级质谱灵敏度的Zeno™ Trap (Zeno 阱) 技术;

能与经典CID碎裂技术互补的电子活化解离 (EAD) 技术;

升级的133Hz超快速二级质谱扫描能力;

新一代全景质谱Zeno SWATH® DIA数据依赖型采集技术等。


多重碎裂质谱ZenoTOF® 7600 系统的卓 越性能,大大提升生命科学多组学研究的深度和广度,尤其在高通量高深度蛋白质组学、蛋白质翻译后修饰(尤其是糖蛋白质组学)、全景非靶向代谢组学、脂质精细结构解析等尖 端领域获得广泛应用。



2023-08-02 16:33:27 163 0
白血病免疫分析流式细胞免疫分型未见明显异常细胞群正常吗
 
2015-08-17 13:10:30 372 1
肿瘤基因检测外周血和肿瘤组织的区别
 
2016-05-02 09:52:49 253 2
免疫识别细胞
具有识别作用的免疫细胞包括已知的记忆细胞B细胞T细胞还有什么求详细准确!请突破高中生物的局限!二位的回答太笼统还是不能很好解释为什么效应T细胞为什么能够识别和识别原理因为高中... 具有识别作用的免疫细胞 包括已知的记忆细胞 B细胞 T细胞 还有什么 求详细 准确! 请突破 高中生物的局限 ! 二位的回答太笼统 还是不能很好解释 为什么 效应T细胞为什么能够识别和识别原理 因为高中生物中并未明确提及效应T细胞有识别作用 吞噬细胞同样未提及 为什么 是高中生物的局限吗 是否具有识别作用又该怎么判断呢 识别与特异性识别有什么区别?? 高手指教! 展开
2009-01-17 00:57:13 387 4
流式细胞仪检测细胞分型结果分析
 
2018-11-26 18:36:47 398 0
直播回顾 | 抽丝剥茧,超多重免疫标记解密肿瘤微环境之奥秘

4月20日上午,徕卡与转化医学网共同举办了网络研讨会——“抽丝剥茧,超多重免疫标记解密肿瘤微环境之奥秘”。徕卡生命科学部的高级应用专员刘继红和Cell DIVE应用科学家Michael Smith为广大观众揭示了CELL DIVE 超多重标记解决方案如何轻松应对复杂的肿瘤微环境,为临床肿瘤的研究和治 疗提供了优秀的研究工具。Indica Labs应用科学家赵永田重 点介绍了在HALO中对获取的Cell DIVE图像的处理、分析步骤以及如何进行高纬的空间生物学分析,用以了解肿瘤微环境中肿瘤细胞和免疫细胞的相互作用关系对研究肿瘤免疫应答的作用机制。


01

CELL DIVE使用的抗体是开放的吗?有大约多少种经过验证的抗体?

A:CELL DIVE 的抗体是开放的,有350种以上的抗体经过验证的抗体可以使用。


02

CELL DIVE可以在临床上用吗,是否有注册证?

A:目前没有注册证,正在申请中。


03

这个平台的检测联系哪位呢?

A:可以联系Leica公司各地的应用支持和销售。


04

这个染色是仪器自动染色吗?

A:可以手动染色也可以和自动染色仪联用自动染色。


05

哪个实验室可以检测?

A:Leica公司有DEMO机,可以提供一定的演示。


06

成像是全片还是一个视野?

A:成像仪可以选择全片成像或者选取一个或多个视野成像。


07

怎样避免非特异性染色 ?核阳性的和胞浆包膜可以随意搭配吗?

A:首先要选择特异性好的抗体,我们抗体库的抗体都是经过验证的抗体。


细胞核阳性和胞浆包膜理论上可以自由搭配。


08

每一轮染完了,除了染料失活,是不是还需要去除一抗?

A:每一轮染色成像完成,染料失活 不需要去除一抗。


09

CELL DIVE是不需要摸索一抗浓度的吗,固定的protocol会不会造成有的组织染不出来有的组织却染色过强?

A:徕卡的protocol适用于绝大多数的组织,有些组织的某个marker 表达特别高或者特别低,可能需要修改抗体浓度。


10

抗体是什么方法学检测标记?除了主讲人介绍的荧光滤镜,能否使用其他的荧光标记和滤镜?

A:抗体验证时参照同样marker的免疫组化的结果;为了减少串色的发生,我们推荐使用Cy2、Cy3、Cy5、Cy7光谱基本相同的染料标记。


11

成像也是设备自动化进行的吗?

A:成像时设备自动进行的,但是可以在拍照前根据样本的染色情况进行优化。


12

Did you find any nonspecific staining while utilizing the different CD markers for immune cells?(Michael Smith)

A:The Cell DIVE solution comes with a list of 350+ antibodies that have been validated for use with the workflow, and for specificity and sensitivity. For antibodies that are not used from the list, we provide details on a three part antibody validation process that also ensures that antibodies used are specific. In the case of residual nonspecific signal, this is likely removed by the autoflourescence imaging and removal of that signal that occurs at every round. So, in our hands, nonspecific staining is minimized at the level of antibody quality control and the image processing that the software performs.


13

关于细胞间邻近距离的分析,我们如何设定所计算的距离范围?

A:关于细胞间邻近距离的分析,所定义距离的范围目前还没有相应的标准。考虑到不同细胞亚型的相互作用,不同免疫细胞亚群之间邻近距离的设定可能需要不同的标准。在分析中,HALO可以对距离进行设定,并按照不同的区间(例如0~5μm,5~10μm,10~15μm……)给出邻近细胞的数量和密度。分析中先进行预分析,根据不同距离范围内免疫细胞的密度和临床信息进行相关性分析。再把确定的距离应用到所用的样本切片中。


14

在分析过程中,我们可以选择局部视野进行分析吗?还是仅能对全组织切片进行分析?

A:分析中,我们建议针对全景组织切片进行分析,但HALO也可以定义ROI区域进行选择性的视野进行分析。这两种分析方法在HALO里都可以实现的。



2022-04-29 12:54:04 157 0
引起三型超敏反应组织损伤的主要细胞
 
2018-11-15 21:33:09 1408 0
IVIS视角——[Nature]亚克隆合作通过修饰局部和全身的免疫微观环境驱动肿瘤转移

肿瘤异质性及转移性

人类大多数肿瘤是异质性的,由具有不同性质的细胞克隆组成,呈现出不同的特点。高度异质性肿瘤具有较差的临床LX,但其潜在机制仍不清楚。肿瘤的转移性是大多数癌症患者死亡的原因。因此,了解转移进程的驱动因子是改善临床结果的关键。


癌症基因组测序研究已经确定了原发性和转移性肿瘤之间具有极小的遗传差异,并显示原位肿瘤和远处转移病灶具有显著的亚克隆异质性。Z近的一些研究表明:微观环境变化是肿瘤转移传播和生长的主要媒介,从而突出了在肿瘤进展中的非细胞自发因子的作用。


本期IVIS视角小编带您探究一下NatureZ近发表的论文:《亚克隆合作通过修饰局部和全身的免疫微观环境驱动肿瘤转移》


 

本文揭示了表达IL11和FIGF (VEGFD)的乳腺癌细胞的小亚克隆协同作用促进转移进展并产生了驱动性和中性亚克隆组成的多克隆转移。单克隆、多克隆原发灶和转移灶的上皮细胞及基质细胞表达谱分析显示了这种协同作用是间接的,是通过局部和系统微环境介导的。作者确定中性粒细胞为主的白细胞群受表达IL11小亚克隆的调节,敲除中性粒细胞的表达,可以阻止肿瘤转移的生长。来自原发性肿瘤、血液和肺的CD45阳性细胞群的单细胞RNA-seq显示IL11作用于骨 髓间充质基质细胞,可诱导产生致瘤性和转移性中性粒细胞前体。本文结合IVIS活体成像系统研究发现了非细胞自发因子和小亚克隆在肿瘤转移中起着关键作用。


探究驱动转移的亚克隆协同作用分子机制

本文用人类乳腺癌细胞系(MDAMB-468)的肿瘤(来源于异质性肿瘤异种移植模型),研究亚克隆在肿瘤表型之间的相互作用。作者之前已经证实一个小的亚克隆通过非细胞自主的相互作用可以驱动肿瘤生长。本文测试了18个亚克隆,每一种表达一种与转移和血管再生有关的分泌蛋白。并发现具有全部18个亚克隆的多克隆肿瘤生长Z快(上图a)。相反只有白细胞介素11 (IL11) 和趋化因子 (C-C motif) 配体5在单克隆肿瘤能够促进肿瘤生长。我们还确定了表达IL11和低聚果糖诱导生长因子(FIGF也被称为VEGFD)的亚克隆两者的混合物在很大程度上能够复制肿瘤这种生长特点。


 

克隆之间合作导致多克隆转移

Nature Cell Biology :Published: 01 July 2019

https://www.nature.com/articles/s41556-019-0346-x

IL11缺失的多克隆肿瘤阻止了肿瘤的生长,揭示了IL11和FIGF因子在肿瘤生长中的协同作用。此外,多克隆肿瘤和仅包括IL11和FIGF亚克隆的肿瘤具有高度的转移性(上图b)。


本文首先验证含有IL11+和FIGF+驱动因子的原发性转移瘤MDA-MB-468的克隆能力,像中性子亚克隆。单克隆或绿色荧光蛋白 (GFP)的多克隆混合物荧光素酶表达亲本细胞,红色荧光蛋白 (RFP)植入v5标记的IL11+细胞、RFP+FIGF+细胞植入到免疫缺陷NOG小鼠的乳腺脂肪垫。我们每周用卡尺测量原发肿瘤的生长情况并通过每周生物发光观察转移病灶成像。多克隆肿瘤(含5% IL11+、5%的FIGF+RFP+细胞和90%的GFP+亲本细胞)生长较快,转移性更强与单克隆和亲本肿瘤相比(如下图a)。


 

中性粒细胞的系统性表达降低YZ了由IL11+和FIGF+亚克隆驱动的多克隆肿瘤的转移扩散(或生长),因此,中性粒细胞的表型和功能特点取决于宿主环境。


CD45+细胞群的单细胞分析

鉴于作者之前的结果表明,中性粒细胞促进肿瘤转移。作者比较了DOX+或DOX-诱导小鼠血液和肺中性粒细胞单细胞转录组特点。IL11和FIGF诱导上调了几个信号通路如:TGFβ和JAK-STAT信号通路,它们与中性粒细胞的免疫系统中肿瘤预生成和预转移有关,这些特征来自肺部,而不是来自血液。尽管中性粒细胞在肺部有变化,作者通过single-cell RNA-seq没有检测到IL11或GIGF受体的表达。然而,IL11RA的细胞转录本在单独的细胞组中明显存在,这些细胞不能归为中性粒细胞或其他白细胞亚群。


这些IL11RA阳性细胞表达编码GP130和SATA3的IL6ST基因,GP130是IL11信号通路中所必需的共同受体。STAT3是LI11下游的作用因子。基于细胞群中基因表达情况,其中还包括细胞外基质和发育相关蛋白,作者将该群体标记为和IL11反应的间充质基质细胞 (MStrCs)。虽然这个群体没有表达典型的间充质干细胞 (MSC)标记物,但其表现了普遍存在于干细胞相关基因的显著特征,这表明它可能是一种未特征化的间充质干细胞前体。之前的研究已经描述过间充质干细胞与白细胞之间的相互作用由多种细胞因子和趋化因子调节的。


在本文的研究中,作者着重于研究两个分泌因子,选择的基础是基于作者之前的数据,它是由较小的亚克隆表达的且协同作用促进转移。IL11属于IL6家族的细胞因子,并在多种癌症的耐药性进展中起着重要的作用,包括前列腺癌和结肠癌。在乳腺癌中,IL11被认为和ZL的耐药性和骨转移相关,以及作为不良预后的标志物。FIGF是VEGFR2和VEGFR3的配体,可以刺激血管生成和淋巴管生成。


本文发现白细胞可能不是IL11直接作用的细胞靶点,但可通过间充质基质细胞分泌因子(MStrCs)间接影响IL11。有趣的是,这些基质细胞也表达PLXDC2和ANTXR1,这在肿瘤相关的内皮细胞中是高表达的。因此,这些IL11RA阳性的间充质基质细胞可能是产生多种细胞类型的祖细胞。对中性粒细胞亚型的进一步认识和开发导致肿瘤转移的中性粒细胞靶向工具结合抗肿瘤细胞靶点的药物,有可能被用于预防乳腺癌转移研究。


PerkinElmer IVIS小动物活体成像系统在该研究中提供了支持,如需了解详情欢迎与我们的工程师取得联系。

复制右方链接了解IVIS小动物活体成像系统:https://url.cn/5fSl2r4


关于珀金埃尔默:

珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。

了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。


2019-10-10 13:07:16 326 0
引起三型超敏反应组织损伤的主要细胞是
引起三型超敏反应组织损伤的主要细胞是... 引起三型超敏反应组织损伤的主要细胞是 展开
2018-11-14 21:30:28 419 0
3D 生物打印肿瘤模型在免疫肿瘤学的应用

 概述

基于 T 细胞的疗法正在迅速发展成为许多癌症的有效一线ZL选择。近年来, FDA 已经批准了几种针对免疫检查点的ZL性抗体和小分子用于临床,以补充和提高T 细胞的靶向性和有效性。这些免疫检查点YZ剂的临床前筛选需要强大的体外肿瘤模型来评估 T 细胞杀伤效率。但是,传统的 2D 肿瘤模型通常缺乏生物学相关性和复杂性来预测体内或临床结果。 3D 生物打印平台以及许多其他 3D 培养方法,提供了在生理上更相关的组织模型中自动筛选各种分子和药物的潜力。在此,在此概念验证研究中,我们描述了小鼠肺癌的同系生物打印肿瘤模型,以在细胞细胞毒性测定中评估免疫检查点YZ剂(PD-1)。在生物印记的肿瘤中观察到 T 细胞浓度依赖性杀伤, 并且添加免疫检查点抗体进一步增强了 T 细胞杀伤效力。有人建议,生物打印的 T 细胞细胞毒性测定法可能使研究人员能够在更有效的转化模型中筛选检查点YZ剂。

引言

       T 淋巴细胞(T 细胞)在实现对传染病和癌症的长期免疫中起着至关重要的作用。 T 细胞可以在感染或癌细胞表面上的主要组织相容性复合物(MHC)分子的背景下识别特定抗原。这种特异性识别导致 T 细胞分泌有毒颗粒,从而特异性杀死靶细胞。传统上,已经使用在二维(2D)单层中生长的靶细胞进行了 T 细胞杀伤(细胞毒性)测定(Golstein,2018)。这些 2D 分析可通过成像或其他方式快速轻松地进行终点分析。但是,在人体内部,T 细胞介导的靶细胞杀伤发生在三维(3D)环境中,这归因于 T 细胞迁移或渗入 3D 组织核心的其他障碍。因此,3D T 细胞细胞毒性测定法在生理上更相关,并被认为可以更好地预测体内实验的结果。在免疫刺激剂的临床试验中,使用三维肿瘤模型进行细胞毒性试验越来越受到关注。

检查点阻断疗法的ZX发展彻底改变了癌症ZL领域,通过YZ免疫检查点来增强 T 细胞介导的肿瘤细胞杀伤(Topalian,2016)。几种检查点YZ剂,例如抗PD1 和抗 PD-L1 抗体,已被批准用于临床(Sharon,2014 年)。然而,开发高通量 T 细胞毒性测定法以快速和低成本地筛选此类YZ剂的需求仍然没有得到满足。

      已经研究了几种 3D 肿瘤模型,包括球状体、悬滴和微流控芯片模型,用于 T 细胞细胞毒性测定。 例如,胶原蛋白-纤维蛋白凝胶用于在 3D 环境中生长癌细胞,以确定杀死所有癌细胞所需的 T 细胞的JD浓度(Budhu,2010)。最近,微流体球体培养用于免疫检查点封锁的体外分析(Jenkins,2018)。 尽管这些模型在模仿体内环境的某些方面显示出希望,但它们通常通量低或无法考虑细胞外基质(ECM)在肿瘤生物学中的关键作用。

      生物打印是一项新兴技术,使研究人员能够自动化制造肿瘤构建体以筛选抗ai药或免疫刺激剂。该技术沉积了一种充满细胞的 ECM 材料(通常称为生物墨水),与肿瘤细胞混合,随后进行化学或热固化,从而为打印结构提供机械强度。在这里,我们探索了3D T 细胞细胞毒性测定法的生物打印技术的潜力,以帮助评估免疫检查点YZ剂。

 

材料和方法

 

细胞准备

为该项目选择了小鼠肺癌细胞系(LLC-1)和同型 OT-1T 细胞。两种细胞类型均在C57BL/6 背景中。 Lewis 肺癌细胞(LLC-1)从美国典型培养物保藏ZX(ATCC)获得,并根据建议的方案进行培养,每 3 至 4 天传代一次。 为了促进活肿瘤细胞的成像,将编码红色荧光蛋白(RFP)的质粒引入 LLC-1 细胞,以生成稳定的 LLC-RFP 细胞。LLC-RFP 细胞(此后称为“LLC-1”)用于其余实验。按照先前发布的方案(Nath,2016 年),使用 0.75µg / mL SIINFEKL(Ova)肽(New England Peptide)培养 OT-1 脾细胞并将其灌注 5 天。 在第 5 天的共培养研究中,未经进一步纯化就使用了引发的细胞毒性 T 淋巴细胞(CTL)。

 

生物墨水的制备和生物打印

中和胶原蛋白 I(CELLINK),并与每毫升胶原蛋白中的 106LLC-1 细胞混合。将所有组件(包括注射器,针头和针尖)置于冰上,直至准备使用。将温度控制的打印头(TCPH)设置为 8°C,而将打印床设置为 10°C。使用 BIO X(软件版本 1.8)上的液滴功能在 96 孔板(n= 3)中对三维 LLC-1 肿瘤进行生物打印(见图 1)。印刷后,将 96 孔板转移到 37°C 的恒温培养箱中 20 分钟,以使胶原蛋白聚合。接下来,将 200 µL DMEM 培养基添加到每个孔中。 媒体每 3 天刷新一次。 肿瘤生长 5 天,然后与 T 细胞共培养。


 

1. 肿瘤的三维(3D)生物打印。 使用 BIO X 的液滴打印功能,用胶原蛋白对 Lewis 肺癌细胞(LLC-1)进行胶原蛋白印刷。将胶原蛋白液滴(肿瘤)热固化并在 DMEM 培养基中保持 5 天,然后再与 T 细胞共培养。

 在第 4 天,将打印的肿瘤与 1 µg/ mL 的 SIINFEKL 肽孵育 24 小时,以使肿瘤细胞表达相关抗原。 在第 5 天, 洗涤打印的肿瘤, 并以不同的效应子与靶标( E∶T) 比

(0∶5)与 T 细胞共培养 48 小时。对于阳性对照,将肿瘤与依托泊苷或 TNFα孵育以诱导细胞凋亡引起的细胞死亡。 阴性对照孔未接受任何 T 细胞或凋亡诱导剂。对于抗原特异性,少数(n = 8)孔中的肿瘤未用 SIINFEKL ZL,但接受了引发的 T 细胞。为了进行免疫检查点分析, 将引发的 T 细胞用 1μg/mL 的抗 PD-1 抗体( 克隆RMP1-14,InVivoMab)预处理 1 小时,然后将其加入与肿瘤的共培养物中(n = 8)。保留 IgG 同种型对照用于比较。

 

影像和统计

如先前所述(Steff,2001;Strebel,2001),RFP 荧光的损失被用作肿瘤细胞死亡的读数。 使用 EVOS Auto 2 荧光显微镜进行成像。 使用 ImageJ 软件(NIH)测量荧光强度,并使用 Graphpad Prism 8 进行图形翻译和制备。通过使用学生的 t 检验在 Prism 中对统计结果进行统计,数据表示为平均值±SEM。


结果与讨论

肿瘤细胞生长和球状体形成

      BIO X 上的液滴功能能够自动将稳定的胶原蛋白肿瘤液滴分配到 96 孔板中。 液滴形状和孔位置的均匀性有助于整个显微镜和分析工作流程。 对打印的肿瘤进行 RFP 荧光成像,并用 Calcein AM 染色以确定细胞活力。 图 2 中显示的结果表明,LLC-1 细胞在第5 天在打印的肿瘤中是可行的。此外,这些细胞被限制在胶原蛋白内,而不是逃逸其结构以在 2D 表面上生长。

 

图 2. 肿瘤细胞的生长和生存力。 对打印的肿瘤进行 RFP 荧光成像,并用钙黄绿素 AM 染色以确定 T 细胞筛选前第 5 天的细胞活力。

 

3D 中的 T 细胞细胞毒性测定

T 细胞介导的细胞毒性被定量和定性验证。 当将肿瘤与 T 细胞共培养时,观察到肿瘤细胞活力的 T 细胞浓度依赖性降低(见图 3A)。 在 5:1(E:T)的比率(代表 106 CTL/孔)下,与无 CTL 对照相比,观察到了肿瘤生存力的统计学显着降低(p=0.0003)(〜30%)。 在存在或不存在 T 细胞的情况下,打印肿瘤的代表性图像显示在图 3B中,当在共培养物中存在 T 细胞时,RFP 荧光显示出质的下降。T 细胞能够附着在胶原屏障上并在 3D ECM 环境中与癌细胞相互作用。

 

3. 在第 5 天使用 3D 生物打印的肿瘤模型进行 T 细胞细胞毒性测定。(A)观察到 T 细胞浓度依赖性地降低了肿瘤细胞的活力,这是通过 RFP 荧光的丧失来确定的。 CTL 的数量代表每孔的总 CTL。 (B)显示了在存在或不存在 T 细胞的情况下打印的肿瘤的代表性图像。 使用相同的采集参数拍摄图像。

 

免疫检查点测定

为了扩大 T 细胞杀伤的效用或限制,将肿瘤与经抗 PD1 抗体预处理的初免 T 细胞以 5:1 的 E:T 比例共培养。如图 4 所示,与同种型对照相比,使用抗 PD1 抗体阻断 PD-1 / PD-L1 轴显示出 T 细胞介导的肿瘤细胞杀伤的增加(p=0.0039)。 因此,由于 PD-1 检查点的阻滞,引发的 T 细胞能够更有效地附着在胶原蛋白屏障上, 更有效地浸润和杀死肿瘤细胞。

  

4. 免疫检查 (A)显示了免疫检查点阻断测定的示意图。 单克隆抗 PD1 抗体阻断了 PD1 与 PD-L1 之间的相互作用,从而增强了 T 细胞对肿瘤细胞的杀伤力。(B)在 IgG 同种型对照或抗 PD1 抗体存在下,将 3D 生物打印的肿瘤细胞与初免化的 T 细胞以 5:1 的 E:T 比例共培养。 PD1 阻断显示出对靶细胞的增强杀伤作用。


结论

 

v 3D 生物打印技术可用于 T 细胞细胞毒性测定中,以用胶原蛋白打印 RFP 标记的鼠类肺癌细胞。

v 生物打印的肿瘤细胞在胶原蛋白基质内仍然被限制和存活。 观察到 T 细胞浓度依赖性的细胞毒性增加。

v 如文献所述,抗 PD-1 抗体的使用增强了 T 细胞介导的杀伤效率。

v T 细胞细胞毒性测定与高含量成像工作流程兼容,还可以适应其他肿瘤模型,包括患者来源的异种移植,以加快药物筛选过程并推动个性化药物的临床转化。

v 进一步的研究可能包括通过生物打印的肿瘤细胞对抗原呈递的定量,肿瘤中 T 细胞的浸润以及 T 细胞表达的细胞因子。

v 此外,BIO X 上的多孔生物打印格式可用于扩大对生物试剂(例如免疫检查点YZ剂)和工程 T 细胞(CAR-T)的高通量筛选的支持。

 

参考文献

1. Budhu, S., Loike, J. D., Pandolfi, A. CD8+ T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. Journal of Experimental Medicine. 2010; 207(1): 223–235. DOI: 10.1084/jem.20091279.

2. Golstein, P. and Griffiths, G. M. An early history of T cell-mediated cytotoxicity. Nature Reviews Immunology. 2018; 18(8): 527–535. DOI: 10.1038/s41577-018-0009-3.

3. Jenkins, R. W., Aref, A. R., Lizotte, P. H., et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discovery. 2018; 8(2): 196–215. DOI: 10.1158/2159-8290.CD-17-0833.

4. Nath, S., Christian, L., Tan, S. Y., et al. Dynein seperately partners with NDE1 and dynactin to orchestrate T cell focused secretion. Journal of Immunology. 2016; 197(6): 2090–2101. DOI:10.4049/jimmunol.1600180.

5. Sharon, E., Streicher, H., Goncalves, P., and Chen, H. X. Immune checkpoint inhibitors in clinical trials. Chinese Journal of Cancer. 2014; 33(9): 434–444. DOI: 10.5732/cjc.014.10122.

6. Steff, A.-M., Fortin, M., Arguin, C., and Hugo, P. Detection of a decrease in green fluorescent protein fluorescence for the monitoring of cell death: An assay amenable to high-throughput screening technologies. Cytometry. 2001; 45(4): 237–243. DOI: 10.1002/1097-0320(20011201)45:4<237::AIDCYTO10024>3.0.CO;2-J.

7. Strebel, A., Harr, T., Bachmann, F., et al. Green fluorescent protein as a novel tool to measure apoptosis and necrosis. Cytometry. 2001; 43(2): 126–133. DOI: 10.1002/1097-0320(20010201)43:2<126::AID

CYTO1027>3.0.CO;2-J.

8. Topalian, S., Taube, J., Anders, R. et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nature Reviews Cancer. 2016; 16(5): 275–287. DOI: 10.1038/nrc.2016.36.

 

2021-03-12 16:07:13 357 0

10月突出贡献榜

推荐主页

最新话题