仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-直播- 视频

问答社区

ibidi实验方案|肿瘤细胞2D侵袭检测方案

上海净信实业发展有限公司 2022-08-09 15:01:18 180  浏览
  • AnielloFederico*,JochenUtikalSkinCancerUnit,GermanCancerResearchCenter(DKFZ),69120Heidelberg,Germany.*Correspondingauthor.E-mailaddress:a.federico@dkfz-heidelberg.de


    为了研究肿瘤微环境影响下肿瘤细胞的运动性和侵袭特性,建立了体外2D侵袭方案。这种2D侵袭方案是一种共培养试验,在这种情况下,是由肿瘤和基质细胞(例如成纤维细胞)组成的。一旦两种细胞类型接触,在不同的条件下评估侵袭成纤维细胞单层的肿瘤细胞的数量,在我们的研究中,我们在模拟实体肿瘤微环境中发现的条件,例如与基质细胞(成纤维细胞)的相互作用以及成纤维细胞释放的可溶性因子(Nnetu等,2012)。我们使用A375黑色素瘤细胞系和真pi成纤维细胞进行了此测定。黑色素瘤细胞激活成纤维细胞,继而维持肿瘤细胞的生长,恶性转化和耐药性(Flach等,2011)。然而,在刺激所测试的抗ai化合物后,我们发现与成纤维细胞直接接触的黑素瘤细胞显示出运动能力受损并且未能侵袭成纤维细胞层。


    材料和试剂

    1. GFP-A375细胞系(ATCC)

    2. 番茄皮成纤维细胞(从健康患者中分离)

    3. MEF细胞培养基

    4.PBS(Sigma-Aldrich;D8537)

    5.胰蛋白酶-EDTA溶液(Sigma-Aldrich;T3924)

    6. 台盼蓝溶液(Sigma-Aldrich;93595)

    7.DMSO(CarlRoth;A994.2),在0.1%最终浓度下使用

    8.MithramycinA(BioTrend;10-2085-5mg),在300nm浓度下使用,用DMSO稀释

    仪器设备

    1. 层流净化罩

    2. 12/24孔多孔板(GreinerBio-One)

    3. 台式离心机

    4. 细胞计数器

    5. 2孔插件(ibidi: 80209)/预置2孔插件培养皿(ibidi:81176)

    6.细胞培养管

    7. 涡旋

    8. 镊子

    9. 光学显微镜

    10. 荧光显微镜

    11. NIS-Elements软件

    ibidi:81176

    实验流程

    01. 将GFP-A375和番茄成纤维细胞系稳定地保存在MEF培养基中,在37°C和5%C02加湿培养箱中。

    02. 当细胞达到亚融合度(约80%融合度)时,在带有PBS的通风橱中清洗它们,以去除死细胞和碎片。

    03. 在培养箱中用胰蛋白酶-EDTA溶液胰蛋白酶消化细胞约5分钟,然后添加MEF培养基以阻止反应。

    04. 将细胞悬浮液收集在15ml细胞培养管中,并用台式离心机(1500xg,5´,RT)短暂离心。

    05. 将细胞重新悬浮在新鲜培养基中;将一体积的细胞悬液与另一体积的台盼蓝溶液混合,用细胞计数器计数活细胞。

    06. 在MEF缓冲液中以4x105细胞/ml的浓度稀释细胞。

    07. 在多孔板上,在每个孔的中间放置一个Culture-Insert2孔(2孔培养插件)。

    08. 用75µl(3x104细胞)FP-A375细胞填充插入物一侧,并用番茄成纤维细胞填充另一侧。用移液器上下混合插入物中的细胞,以确保细胞完全分布。

    09. 将多孔板放在培养箱中,放置过夜。

    10. 第二天,在镊子的帮助下,小心地从每孔中取出培养基和插件,并用PBS清洗。

    11. 小心除去PBS,然后加入新鲜的MEF培养基。

    12. 用光学显微镜检查GPF-A375与Tomto成纤维细胞之间产生的间隙的闭合状态。

    13. 一旦每个孔中的间隙完全闭合,请使用荧光显微镜和成像软件获取荧光图像。确保肿瘤细胞尚未侵入成纤维细胞单层。

    14. 小心地除去培养基,并在控制组孔中添加培养基+0.1%PBS,在处理组孔中添加培养基+300nM丝裂霉素A。将板放在培养箱中24小时(处理孵育时间)。

    24小时后,在荧光显微镜下重新采集共培养孔,以评估治疗组与对照组(绿色荧光细胞散布在红色标记层上)的肿瘤细胞侵袭行为的任何变化(图2)。

    图1:2D侵袭系统的示意图

    图2:2D侵袭检测的荧光图像

    将黑素瘤细胞和成纤维细胞共培养,然后暴露于300nmMithramycinA(或DMSO)。24小时后,评估侵袭成纤维细胞层的肿瘤细胞的数目。A375细胞显示出大规模的侵袭行为,受到MithramycinA治疗的损害。比例尺:500μm。

    备注:

    1.此处描述了MEF培养基组成(参考文献1)。

    2.此文仅供参考。

    3.此实验方案来自ibidi的实际用户,更多详情可联系本文作者。

    参考文献:

    1.MithramycinAandmithralogEC-8042inhibitSETDB1expressionanditsoncogenicactivityinmalignantmelanoma. FedericoA,SteinfassT,LarribèreL,NovakD,MorísF,NúñezLE,UmanskyV,UtikalJ.MolelucarTherapy-Oncolytics2020;doi: https://doi.org/10.1016/j.omto.2020.06.001 (Methoddescribedinthisprotocolwasincludedinthispublishedarticle).

    2.Theimpactofjammingonboundariesofcollectivelymovingweak-interactingcells. NnetuKD,KnorrM,KäsJ,ZinkM.NewJournalofPhysics2012;doi:https://doi.org/10.1088%2F1367-2630%2F14%2F11%2F115012

    3.Fibroblastscontributetomelanomatumorgrowthanddrugresistance. FlachEH,RebeccaVW,HerlynM,SmalleyKS,AndersonAR.Molecular pharmaceutics2011;doi:10.1021/mp200421k

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

ibidi实验方案|肿瘤细胞2D侵袭检测方案

AnielloFederico*,JochenUtikalSkinCancerUnit,GermanCancerResearchCenter(DKFZ),69120Heidelberg,Germany.*Correspondingauthor.E-mailaddress:a.federico@dkfz-heidelberg.de


为了研究肿瘤微环境影响下肿瘤细胞的运动性和侵袭特性,建立了体外2D侵袭方案。这种2D侵袭方案是一种共培养试验,在这种情况下,是由肿瘤和基质细胞(例如成纤维细胞)组成的。一旦两种细胞类型接触,在不同的条件下评估侵袭成纤维细胞单层的肿瘤细胞的数量,在我们的研究中,我们在模拟实体肿瘤微环境中发现的条件,例如与基质细胞(成纤维细胞)的相互作用以及成纤维细胞释放的可溶性因子(Nnetu等,2012)。我们使用A375黑色素瘤细胞系和真pi成纤维细胞进行了此测定。黑色素瘤细胞激活成纤维细胞,继而维持肿瘤细胞的生长,恶性转化和耐药性(Flach等,2011)。然而,在刺激所测试的抗ai化合物后,我们发现与成纤维细胞直接接触的黑素瘤细胞显示出运动能力受损并且未能侵袭成纤维细胞层。


材料和试剂

1. GFP-A375细胞系(ATCC)

2. 番茄皮成纤维细胞(从健康患者中分离)

3. MEF细胞培养基

4.PBS(Sigma-Aldrich;D8537)

5.胰蛋白酶-EDTA溶液(Sigma-Aldrich;T3924)

6. 台盼蓝溶液(Sigma-Aldrich;93595)

7.DMSO(CarlRoth;A994.2),在0.1%最终浓度下使用

8.MithramycinA(BioTrend;10-2085-5mg),在300nm浓度下使用,用DMSO稀释

仪器设备

1. 层流净化罩

2. 12/24孔多孔板(GreinerBio-One)

3. 台式离心机

4. 细胞计数器

5. 2孔插件(ibidi: 80209)/预置2孔插件培养皿(ibidi:81176)

6.细胞培养管

7. 涡旋

8. 镊子

9. 光学显微镜

10. 荧光显微镜

11. NIS-Elements软件

ibidi:81176

实验流程

01. 将GFP-A375和番茄成纤维细胞系稳定地保存在MEF培养基中,在37°C和5%C02加湿培养箱中。

02. 当细胞达到亚融合度(约80%融合度)时,在带有PBS的通风橱中清洗它们,以去除死细胞和碎片。

03. 在培养箱中用胰蛋白酶-EDTA溶液胰蛋白酶消化细胞约5分钟,然后添加MEF培养基以阻止反应。

04. 将细胞悬浮液收集在15ml细胞培养管中,并用台式离心机(1500xg,5´,RT)短暂离心。

05. 将细胞重新悬浮在新鲜培养基中;将一体积的细胞悬液与另一体积的台盼蓝溶液混合,用细胞计数器计数活细胞。

06. 在MEF缓冲液中以4x105细胞/ml的浓度稀释细胞。

07. 在多孔板上,在每个孔的中间放置一个Culture-Insert2孔(2孔培养插件)。

08. 用75µl(3x104细胞)FP-A375细胞填充插入物一侧,并用番茄成纤维细胞填充另一侧。用移液器上下混合插入物中的细胞,以确保细胞完全分布。

09. 将多孔板放在培养箱中,放置过夜。

10. 第二天,在镊子的帮助下,小心地从每孔中取出培养基和插件,并用PBS清洗。

11. 小心除去PBS,然后加入新鲜的MEF培养基。

12. 用光学显微镜检查GPF-A375与Tomto成纤维细胞之间产生的间隙的闭合状态。

13. 一旦每个孔中的间隙完全闭合,请使用荧光显微镜和成像软件获取荧光图像。确保肿瘤细胞尚未侵入成纤维细胞单层。

14. 小心地除去培养基,并在控制组孔中添加培养基+0.1%PBS,在处理组孔中添加培养基+300nM丝裂霉素A。将板放在培养箱中24小时(处理孵育时间)。

24小时后,在荧光显微镜下重新采集共培养孔,以评估治疗组与对照组(绿色荧光细胞散布在红色标记层上)的肿瘤细胞侵袭行为的任何变化(图2)。

图1:2D侵袭系统的示意图

图2:2D侵袭检测的荧光图像

将黑素瘤细胞和成纤维细胞共培养,然后暴露于300nmMithramycinA(或DMSO)。24小时后,评估侵袭成纤维细胞层的肿瘤细胞的数目。A375细胞显示出大规模的侵袭行为,受到MithramycinA治疗的损害。比例尺:500μm。

备注:

1.此处描述了MEF培养基组成(参考文献1)。

2.此文仅供参考。

3.此实验方案来自ibidi的实际用户,更多详情可联系本文作者。

参考文献:

1.MithramycinAandmithralogEC-8042inhibitSETDB1expressionanditsoncogenicactivityinmalignantmelanoma. FedericoA,SteinfassT,LarribèreL,NovakD,MorísF,NúñezLE,UmanskyV,UtikalJ.MolelucarTherapy-Oncolytics2020;doi: https://doi.org/10.1016/j.omto.2020.06.001 (Methoddescribedinthisprotocolwasincludedinthispublishedarticle).

2.Theimpactofjammingonboundariesofcollectivelymovingweak-interactingcells. NnetuKD,KnorrM,KäsJ,ZinkM.NewJournalofPhysics2012;doi:https://doi.org/10.1088%2F1367-2630%2F14%2F11%2F115012

3.Fibroblastscontributetomelanomatumorgrowthanddrugresistance. FlachEH,RebeccaVW,HerlynM,SmalleyKS,AndersonAR.Molecular pharmaceutics2011;doi:10.1021/mp200421k

2022-08-09 15:01:18 180 0
ibidi实验方案|如何创建令人惊叹的细胞球体3D图像

  小鼠 L929 成纤维细胞的多细胞球体是在µ-Slide 球体灌注中创建的。在从细胞悬浮液中形成球体后,使用 ibidi 泵系统进行灌注。添加 ibidi Pump 可确保球体在长期培养过程中获得最佳营养。

  

  在灌注培养 1 周后,将球体固定并用鬼笔环肽染色以观察 F-肌动蛋白细胞骨架。最后,球体被清除以增强成像深度和分辨率。我们使用EMOVI 方法进行具有成本效益、无害的整体成像,这可以在固定球体上实现基于抗体的多重免疫标记。球体的清除允许分析整个球体成纤维细胞甚至在球体成纤维细胞中心的成纤维细胞的分布和组织,同时保留球体的形态

  

  01材料和试剂

  

  细胞和试剂

  

  •L929成纤维细胞(DSMZ,编号ACC 2)

  

  •Accutase(A1110501,Gibco)

  

  •细胞培养基 RPMI-1640 (Gibco, 21875034)

  

  •胎牛血清 (FCS, Gibco, 10270106)

  

  •细胞内 (IC) 固定缓冲液 (eBioscience, 00-8222-49)

  

  •Dulbecco 磷酸盐缓冲液(PBS、Sigma、D8537)

  

  •正常小鼠血清(Jackson,015-000-120)

  

  •正常驴血清(Jackson,AB_2337258)

  

  •Triton X-100(Alfa Aesar,A16046)

  

  •Flash Phalloidin™ Green 488(鬼笔环肽;500x,Thermo Fisher Scientific,46410)

  

  •4',6-二脒-2-苯基吲哚(DAPI,浓度20μg/mL,西格玛奥德里奇,D9542)

  

  •去离子水 (diH2O)

  

  •异丙醇(Carl Roth,CP41.2)

  

  •肉桂酸乙酯 (ECi) (Sigma, W243000)

  

  02缓冲液和溶液

  

  培养基

  

  •新鲜制备并在 4°C下储存长达一周

  

  •基础培养基 RPMI-1640 (Gibco, 21875034)

  

  •10%  FCS ( Gibco,10270106)

  

  封闭和染色缓冲液

  

  •PBS 

  

  •1% (v/v)FCS 

  

  •1% (v/v) 正常小鼠血清

  

  •1% (v/v) 正常山羊血清

  

  •0.3% (v/v) Triton  X-100

  

  染色液

  

  •封闭和染色缓冲液

  

  •1:500 鬼笔环肽(最终浓度 1x)

  

  •1:10 DAPI(最终浓度 2 µg/mL)

  

  30% / 50% / 70% (v/v) 异丙醇稀释液

  

  •混合适当体积的 diH2O 和异丙醇

  

  •使用前预冷至 4 °C

  

  03 设备   

  

  •ibidi 泵系统 (ibidi, 10902)

  

  •具有生物惰性表面钝化的 ibidi µ-Slide 球体灌注(ibidi,80350)

  

  •用于 µ-Slide 的 ibidi 串行连接器(ibidi,10830)

  

  •ibidi 灌注套装蓝色 (ibidi, 10961)

  

  •层流罩

  

  •培养箱,37°C 和 5% CO2

  

  •血细胞计数器(康宁)

  

  •移液器(康宁)

  

  •倒置共聚焦显微镜(Leica TCS SP8)

  

  •徕卡应用套件 X

  

  •LIGHTNING(反卷积软件)

  

  •Imaris v9.5

  

  04 操作程序

  

  第一部分:µ-Slide球体灌注中的球体形成和培养

  

  请在使用 µ-Slide Spheroid Perfusion 之前阅读指示。所有步骤均需在无菌条件下执行。

  

  开始实验之前,在标准细胞培养瓶(例如 T75)中制备 L929 成纤维细胞,细胞粘附在底部。细胞在实验当天应该是健康的并且最佳亚汇合。

  

  重要提示:在 37°C 和 5% CO2的培养箱内过夜平衡所有必需的材料,例如载玻片、培养基和管道(灌注套件)。平衡对于防止气泡随着时间的推移而出现至关重要。

  1. 将60 µl 无细胞培养基注入 µ-Slide Spheroid Perfusion 的每个通道(根据说明用提供的盖玻片封闭)

  

  2. 在培养箱中 37°C 孵育 2 小时。孵育期间始终关闭盖子。

  

  3. 用 Accutase 处理培养的 L929 细胞 1-2 分钟以使其脱离。

  

  4. 收集细胞悬液,离心,在培养基中稀释;量取决于所需的细胞浓度。

  

  5. 对细胞计数并调整至终浓度为 5 x 105cells/ml。

  

  6. 用无细胞培养基冲洗 µ-Slide 球体灌注的通道,以去除潜在的气泡。

  

  7. 将 45 µl 细胞悬液直接移入每个通道。

  

  8. 在 37°C 下孵育 1 小时,使细胞在壁孔中沉淀。

  

  9. 用60 µl 无细胞培养基填充 µ-Slide Spheroid Perfusion 的储液库。

  

  10. 在 37°C 下孵育过夜以形成球体。

  

  11. 检查通道是否有气泡。如果通道中存在任何气泡,请用无细胞培养基小心冲洗通道。

  

  12. 使用ibidi 串行连接器连接 µ-Slide Spheroid Perfusion 的 3 个通道

  

  13. 根据ibidi 泵系统、流体单元和灌注装置指示.

  

  14. 将µ-Slide 球体灌注连接到 ibidi 泵系统并开始流动。使用尽可能低的流速(5 mBar 气压导致流速为 0.74 ml/min)。进行实验,直到球体具有所需的成熟状态,在这种条件下培养 7 天后。

  图1:L929 成纤维细胞在孔中形成球体并在流动条件下培养

  图 2:L929 成纤维细胞在µ-Slide 球体灌注中显示球体形成。第1 天的示例

  

  (A)第 6 天 (B),使用 ibidi 泵系统灌注,0.74 毫升/分钟。相差显微镜,10 倍物镜,井径 800 µm。

  

  第二部分:L929 球体的染色和清除

  

  染色直接在 µ-Slide Spheroid Perfusion 中进行。在开始染色之前,请阅读指示并遵循载玻片中关于一般移液和更换溶液的建议。

  

  1. 当 L929 球体培养达到所需的成熟状态(此处为 7 天后)时,小心地断开 µ-Slide球体灌注与 ibidi 泵系统的连接。

  

  2. 在 RT 处用冷 IC 固定缓冲液固定球体 10 分钟。

  

  3. 在 RT 中将球体封闭和染色缓冲液中孵育 1 小时。

  

  4. 在 37°C 下用染色溶液孵育球体过夜。从这一点开始,保持载玻片避光。图 3A 显示了清除前的球体成像。

  

  5. 第二天,用 Blocking and Staining Buffer 清洗细胞一次。

  

  6. 通过在冰上以上升 30%、50% 和 70% 的异丙醇稀释液孵育15 分钟,依次使球体脱水。

  

  7.  在冰上用纯异丙醇孵育球体两次 15 分钟。

  

  8.  从冰中取出载玻片,让它升温至 RT。

  

  9.  执行清除:在 RT 处用纯 ECi 灌注两次。在这个阶段,球体可以避光储存数周,而不会显着损失荧光。

  

  10.  使用共聚焦显微镜的图像球体(参见图 3)。

  图 3:清除前后染色 L929 球体的共聚焦显微镜(红色:鬼笔环肽,青色:DAPI)。

  

  (A) 清除前的球体。请注意,由于光散射和吸收,只能看到外围细胞,而看不到中心的细胞。(B, C) 清除后的球体。请注意,清洗前后的尺寸差异源于脱水和清洗过程,同一位置的横截面。(B) 横截面 (C) 体积/3D 视图。球体的清除允许即使在球体成纤维细胞的中心也可以看到细胞,同时保留球体的形态。细胞核的计数甚至可以确定形成该球体的细胞数。

  

  点击请查看清除前后染色球体的直接对比视频 (z-stack of 440 slices at a slice spacing of 0.36 µm)。

  注:此实验方案来自ibidi的实际用户,更多详情可联系本文作者E-mail address: selina.keppler@tum.de

  

  仅供科研使用!

2022-08-17 15:41:45 294 0
ibidi实验方案|在流体环境下细胞培养进行粘附实验

  该应用描述了一种在流动下的粘附试验,该试验旨在研究特定细胞表面分子的作用,以确定它们在细胞附着和粘附到其他细胞类型期间的潜在相互作用。

 

  对于我们的方法,我们使用预染色的鼠肿瘤细胞(多发性骨s瘤:MM)和鼠内皮细胞(EC),然后使用单克隆抗体阻断我们感兴趣的分子之一。简而言之,将EC接种到ibidi通道μ-SlidesI0.6mmLuer中,并在恒流下培养24小时。为了开始共培养,将标记的MM细胞添加到流动容器中并继续流动。24小时后,用抗体(以阻断感兴趣的分子)或相应的同种型对照处理装置,并保持流动24小时。第二天,将μ-Slides与流体单元(FU)断开并清洗以去除非粘附的MM细胞。为了分析标记的MM细胞对EC的粘附,使用共聚焦显微镜获得了μ-Slides的荧光图像。

 

  1. 材料和试剂

 

  •MOPC多发性骨s瘤(MM)细胞系(ATCC,TIB-23™)

 

  •EOMA内皮细胞(EC)系(ATCC,CRL-2586™)

 

  •含10%FCS的RPMI培养基(FisherScientific,11530586)

 

  •内皮细胞生长培养基(EC培养基、CellBiologics、M1168)

 

  •PBS(泛生物技术,P04-361000)

 

  •非酶细胞解离溶液(Sigma-Aldrich,C5914-100ML)

 

  •台盼蓝溶液(Sigma-Aldrich,93595)

 

  •CellTracker™绿色CMFDA染料(ThermoFisher,C7025)

 

  2. 设备和设置

 

 

  •带有2个流体单元(FU)的ibidi泵系统,每个单元都带有用于2ml储液罐的支架(ibidi,10977)

 

  •ibidiμ-SlideI0.6mmLuer,ibiTreat(ibidi,80186)

 

  •ibidiPerfusionSet蓝色,15厘米,内径0.8毫米(ibidi,10961)

 

  •ibidi过滤器/储液罐套装,2毫升(ibidi,10972)

 

  •带细胞培养设备的层流罩

 

  •培养箱(所有培养步骤均在37°C和5%CO2下进行)

 

  •带有适当滤光片组和照相机的荧光显微镜

 

  •粘度:0.0072(dynxs)/cm²

 

  3.实验流程

 

  1.准备EOMA细胞稀释液:根据制造商的说明,使用非酶细胞解离溶液分离先前培养的EOMA细胞。使用血细胞计数器(Neubauerchamber)对细胞进行计数。在EC培养基中将细胞稀释至1.2x106个细胞/ml的浓度。

 

  2.种入EOMA细胞:在3个 µ-SlidesI0.6mmLuer(ibidi,80186)中加入150µlEOMA细胞稀释液(每个µ-Slide1.75x105EOMA细胞),然后孵育3小时。

 

 

表1:实验设置

 

  3.启动流量:播种三小时后,将2个µ-Slides连接到流体单元FU,使用总量2.7毫升EC培养基。在8.2mbar的压力下将EOMA细胞表面的剪切应力设置为0.5dyn/cm²。测量流速并使用两个FU的平均值来计算校准因子。提前孵育FU和连接的载玻片过夜。第三个带有EOMA细胞的µ-Slide用作静态控制。在没有任何流动的情况下孵育它过夜。

 

  4.准备MM细胞:根据制造商的方案,用CellTrackerGreen(CMFDA)染料在600µlRPMI培养基(不含FCS)中染色6x105MM细胞。标记后,离心细胞并使用血细胞计数器对其进行计数。

 

  5.开始与MM细胞共培养:停止流动并在无菌条件下从FU水库中取出EC培养基。要开始共培养,将RPMI培养基(含10%FCS)和EC培养基以1:1的比例混合,并填充该混合物总体积为2.5ml,其中含有1.5x105MM注入两个FU储液罐。将FU重新连接到泵系统并继续流动24小时。

 

  6.分子阻断:将MM细胞添加到ECs后24小时,用100µg/ml抗体(载玻片 #2)或相应的同种型对照(载玻片 #1)处理细胞,将它们直接添加到FU,无需更换介质。将孵育保持在流动状态下24小时。

 

  7.清洗和成像:从FU上断开µ-Slides。用PBS清洗细胞一次,以去除任何非贴壁细胞。使用共聚焦显微镜获取荧光图像,以可视化附着在EC层上的标记MM细胞。

 

 

图1:与同种型对照处理(左图)相比,阻断特定表面分子(右图)时,MM细胞对ECs的粘附性降低


2022-06-29 15:59:20 225 0
ibidi实验方案| µ-Slide VI 0.4串联,也适用其他Luer-Slides单通道载玻片

  1.介绍

  

  ibidi泵系统/流体剪切力系统是专为灌注条件下的长期细胞调节而设计。标准方法是将一个载玻片连接到一个灌注装置。在某些情况下,增加载玻片(细胞)的数量可能是有用的。例如,当计划进行各种染色时,或者如果细胞数量对于后续的应用(如FACS)不够时。

  

  本应用是一个循序渐进依次连接µ-Slide VI0.4六通道载玻片的实验方案。

  

  重要提示!

  

  串联的通道承受着几乎相同的流速,因此剪切应力也几乎相同。

  

  我们强力建议串联通道载玻片,而不是并联!

  

  我们建议按所述方式连接不要超过两个µ-Slide VI0.4 六通道载玻片

  

  2.材料

  

  对于设置,需要以下材料(无菌):

 

  * 串联连接管(ibidi #10830),5 pieces

 

  * 细胞培养基

 

  * 接种了细胞的ibidi µ-Slide VI 0.4

 

  * 灌流管

 

  * 1 ml注射器

 

  * 软管夹

 

  * 移液吸头

  

  重要提示!

  

  将串联连接管、细胞培养基、通道载玻片和灌注装置在培养箱中平衡一整晚!

  

  本方案的所有步骤都应在无菌条件下完成!

  

  3.准备工作

  

  整个设置相当于只有一个通道的标准实验。 区别是,在将整个组件连接到Perfusion Set之前,先将多个通道串行连接起来。

  

  3.1.接种细胞

  

  像往常一样在µ-Slide VI 0.4的通道中接种细胞。如果需要进一步的静态培养,让细胞附着并在附着后用60µl无细胞培养基填充储液池。详细说明见“使用ibidi流体剪切力系统培养内皮细胞实验方法汇总”。细胞贴壁后,就可以进行载玻片的串连了。

  

  3.2.泵设置

  

  按照“使用ibidi流体剪切力系统培养内皮细胞实验方法汇总”中的说明准备泵的设置。向灌流管的储液池中各注入5ml平衡介质,并以中压(约50mbar)运行泵,去除气泡。

  

  重要提示!

  

  将公鲁尔接头连接到母鲁尔接头时,务必小心不要带进气泡。

  

  尽可能快地工作,以避免载玻片和细胞冷凝。整个过程必须在10分钟内完成。

  

  4.串联连接

  

  通道的串联连接是在细胞贴壁后和将载玻片连接到灌注管之前完成。

  按照第3部分的描述准备载玻片,接种细胞并贴壁        如图所示,将五个串行连接管连接到Luer端口

  用无细胞培养基填充注液孔,直到所有注液孔完全充满    在此步骤中,注意注液孔底部不能有气泡

  注意不能在注液孔中留有气泡

  用1ml的无菌注射器吸满培养基,小心插入如图的孔中,不要引入气泡。

  小心慢慢注入培养基,直到第一个串联管有培养基微微冒出

  小心的将串联管弯过来,插入相邻的Luer端口中。不要产生气泡。

  继续推动注射器,直到第二根串联管也被充满,继续推动注射器充满下一根串联管。

  重复上面的操作,继续充满所有的通道和串联管。

  将所有的串联管连接好后,将加满液体排除气泡的灌流管用软管夹夹住。

  从灌流管的母鲁尔锁定耦合器中拔出公鲁尔接头,并将其插入载玻片上末尾一个Luer端口中。在慢慢抽出注射器,用新鲜的培养基填满Luer端口并去除气泡

  从灌流管的母鲁尔锁定耦合器中拔出第二个公鲁尔接头,并将其插入载玻片上另一端末尾的Luer端口

  设置完成,可开始启动实验。别忘了取下软管夹!

  串联灌流系统搭建完成。

  

  5.调整流速

  

  软件中无法预见多个通道载玻片的设置。需要调整泵的参数以适应新的要求。作为指南您可以在软件中选定正在使用是µ-Slide VI0.4通道载玻片。由此产生的流速(以及剪切应力)将低于在单通道的应用中。用所需的剪切应力启动一个循环,手动测量流速(ibidi Pump Instructions, page 40(可联系我们索要电子版文档))。然后进入重新校准对话框,输入计算的(软件给定的流速)和测量的流速。


2022-10-26 16:35:36 142 0
如何设计化学合成实验方案
 
2018-11-19 07:31:59 365 0
Nature亮点 | Phenoptics™组织微环境分析方案深度解析肿瘤免疫细胞分型

      Z近数十年以来肿瘤的免疫ZL相关研究取得了革命性的突破,特别是基于PD-1、CTLA-4等类似的免疫检查点YZ剂的ZL方案表现尤为突出。但是即便如此,肿瘤的免疫ZL领域仍然面临巨大的挑战,比如治LX果的不确定性、患者反应的不可预估性、免疫ZL耐药抵抗及检测生物标志物缺乏等都制约了对肿瘤患者的jing准有效ZL。

 

Balkwill F R, Capasso M, Hagemann T. The tumor microenvironment at a glance.

      当前大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将是破除肿瘤免疫ZL障碍的关键所在。肿瘤免疫微环境在肿瘤发生、侵袭、转移及ZL耐受过程中占据重要位置,细化免疫微环境的细胞免疫分型,切实有效的分子分型定量研究是指导肿瘤jing准ZL的基础,也是在jing准医学时代背景下亟需解决的难题。

      独特的PhenopticsTM多光谱组织微环境景观分析方案融合了Opal多色荧光样品标记Vectra多光谱成像inForm智能组织定量分析技术,可以wan美的实现传统分析方案难以解决的技术难题,从而更好的实现对于肿瘤患者的jing准诊断和ZL。

 

      2019年6月26日,Nature杂志在线发表了巴黎大学Jérôme Galon教授研究组题为Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文充分利用了PhenopticsTM组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程在侵袭前病变组织和肿瘤微环境的细胞分型改变以及相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的发SF展进行调控和jing准ZL,为提高肿瘤免疫ZL的有效率提供了新的技术思路和方法。

 

Nature. 2019 Jun 26. doi: 10.1038/s41586-019-1330-0

      该研究工作的ling导者Jérôme Galon教授一直致力于利用PhenopticsTM组织微环境分析方案进行肿瘤免疫ZL研究和新的免疫ZL组合策略方案开发。附图来自Jérôme Galon教授基于Opal多色荧光标记技术获取的肿瘤组织免疫微环境描绘图片,为肿瘤免疫诊断和jing准ZL提供重要的参考依据。

 

来源:https://www.epo.org/learning-events/european-inventor/finalists/2019/galon.html

      全新的PhenopticsTM组织微环境分析方案可以实现在组织切片样本上实现多达9色的靶点抗原荧光标记和检测,并且进行多种类型细胞的分型定量研究深度挖掘组织微环境所蕴含的生物学信息,从而为肿瘤的免疫学研究和jing准ZL提供可靠依据。

 

Phenoptics™  组织微环境分析方案—Opal 9色荧光标记示例图

关于珀金埃尔默:

珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。

了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn

 


2019-07-05 18:05:22 482 0
纸张抗张强度的检测方案!
 
2014-09-30 02:21:06 536 1
ibidi 3D肿瘤模型解决方案

 

 

肿瘤细胞在 3D 微环境中生长,与周围环境相互交流、相互作用。细胞行为在 3D 基质中培养与 2D 环境中不同。在许多情况下,3D 细胞培养设置更准确地反映了体内的状况。这包括使用球体和类器官的药物筛选,这些球体和类器官如今作为肿瘤模型是必不可少的。在分析癌细胞行为、迁移、增殖、对药物治疗的反应以及基因和蛋白质表达时,应考虑到这一点。

 

 

HT-1080 癌细胞在 3D 胶原蛋白凝胶中的侵袭。 将侵入性人纤维肉瘤癌球体 (HT-1080) 嵌入 I 型胶原蛋白大鼠尾凝胶中。 在 µ-Slide 8 孔中记录侵入凝胶基质 48 小时。 4x 物镜,明场

 

 

 

PDAC细胞和成纤维细胞的类器官共培养。 人yi腺癌 (PDAC) 细胞系 PA-TU-8988T(绿色,用 CellTrackerTM Green 染色)和鼠成纤维细胞系 mPSC4(红色,用 CellTrackerTM Orange CMTMR 染色)在 µ-Slide Spheroid Perfusion 中的类器官共培养 . μ-Slide 覆盖有 25 μm FEP 箔,用于在直立光片显微镜期间匹配更接近水的折射率。 该图像由 MPI Muenster 的 S. Volkery 使用 M Squared Aurora Airy 光束直立光片设置获取。 样品由德国马尔堡大学的 K. Roth 提供。

 

用于 3D 癌症模型的 ibidi 解决方案

 

ibidi Collagen Type I, Rat Tail 是一种非胃蛋白酶处理的天然胶原蛋白,用于在凝胶基质中对 ECM 进行建模。其快速聚合促进了 3D 凝胶中的最佳细胞分布。

 

µ-Slide Spheroid Perfusion 是一种用于长期球体培养的专用灌流小室。 3 x 7 孔中的每一个都形成了自己的微环境(niche),用于培养标本。通过孔顶部的通道进行灌注(例如,通过使用 ibidi 泵系统)可确保在整个实验过程中实现最佳营养和氧气扩散,而不会使标本暴露在显著的剪切力下。

 

具有多细胞 µ-Pattern载玻片可实现空间定义的细胞粘附,用于生成球体和类器官、长期培养和高分辨率成像。确定的粘附点能够从细胞悬液中捕获所有粘附的单细胞。周围的 Bioinert 表面是完全不粘附细胞的。这迫使所有细胞在粘附点处相互聚集,从而以明确和可控的方式形成球体。

 

 

Bioinert 是一种稳定的生物惰性表面,用于在非粘附表面上对球体、类器官和悬浮细胞进行长期培养和高分辨率显微镜检查,无需任何细胞或生物分子粘附。它目前可作为 µ-Dish 35 mm、高 Bioinert、µ-Slide 8 Well 高 Bioinert、µ-Slide 4 Well Bioinert 和 µ-Slide VI 0.4 Bioinert。


 

在 µ-Slide III 3D 灌注中,单细胞、球体或类器官可以在凝胶层中或凝胶层上培养或嵌入 3D 基质中。特殊的通道几何形状允许以低流速进行灌注(例如,当使用 ibidi 泵系统时),确保最佳的氧气和营养供应。这种设置使长达数周的长期培养成为可能。此外,薄盖玻片底部可高分辨率成像。


 

 

µ-Slide 血管生成和 µ-Plate 血管生成 96 孔是凝胶基质上或凝胶基质中单细胞、共培养物、球体和类器官的 3D 培养和显微镜观察的简单、经济高效的解决方案。凝胶层直接连接到上面的培养基储存器,通过扩散可以快速轻松地更换培养基。对于特殊应用,还可提供带有 1.5H 玻璃底的 µ-Slide 血管生成载玻片。

 

 

μ-Slide I Luer 3D 设计用于在具有定义剪切应力的 3D 凝胶基质上或其中培养细胞。三个孔中的每一个都可以填充凝胶,细胞可以嵌入其中。对于定义流量的应用,顶部的通道可以连接到泵(例如,连接到 ibidi 泵系统),以确保最佳的氧气和营养供应。

 

 

参考文献:

3D Sandwich culture of squamous cell carcinoma lines using the µ-Plate Angiogenesis 96 Well

Hoque Apu, E., Akram, S. U., Rissanen, J., Wan, H., & Salo, T. (2018). Desmoglein 3 – Influence on oral carcinoma cell migration and invasion. Experimental Cell Research. 10.1016/J.YEXCR.2018.06.037


Breast tumor organoid culture in the µ-Slide Angiogenesis

Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., Santacroce, N., Beisel, C., Ivanek, R., Bürglin, T., Tiede, S., van Rheenen, J., & Christofori, G. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell. 10.1016/J.DEVCEL.2021.11.006


Live cell imaging of HT29 tumor spheroid co-culture with neutrophils and NET formation in the µ-Slide III 3D Perfusion

Teijeira, Á., Garasa, S., Gato, M., Alfaro, C., Migueliz, I., Cirella, A., de Andrea, C., Ochoa, M. C., Otano, I., Etxeberria, I., Andueza, M. P., Nieto, C. P., Resano, L., Azpilikueta, A., Allegretti, M., de Pizzol, M., Ponz-Sarvisé, M., Rouzaut, A., Sanmamed, M. F., … Melero, I. (2020). CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity. 10.1016/J.IMMUNI.2020.03.001

2022-05-12 19:18:59 176 0
ibidi科普知识系列|伤口愈合细胞迁移实验小常识

1、Culture-Inserts插件可以重复使用吗?


尽管 Culture-Inserts 插件中的材料可高压灭菌并且与酒精相容,但我们不建议重复使用。 如果您仍想尝试重复使用,则需要建立一个用酸或碱的清洁程序。 ibidi没有任何清洁Culture-Inserts插件的经验,虽然它们可能会保持粘性,但之前实验的残留可能会影响重现性。 


2、可否在盖玻片上使用 Culture-Inserts插件吗?


可以,您可以在任何盖玻片上使用 Culture-Inserts插件。 到目前为止,还没被报告与任何干燥表面不相容。 


3、是否可以使用 Culture-Insert 插件制作小于 500 µm 的伤口?

图片


不可以,Culture-Inserts 插件中最小和标准的伤口尺寸是 500 µm。 Culture-Insert 4 Well /4孔插件会有一个额外的中心间隙,伤口大小为 1000 µm。

3的图片


4、Culture-Insert 插件是如何固定在培养皿上的?


Culture-Insert 插件由生物相容的硅胶材料制成。 硅胶底部有一个粘性表面,可粘附(粘)在任何平坦、干燥、均匀的表面。 这种材料足够柔软可粘到表面上。 您可以用无菌镊子按压插件来简单地修复它。

4的图片


 5、您是否曾经遇到过 Culture-Inserts 插件无法粘附在定制涂层表面上的问题?


只要表面干燥,我们从未遇到过让 Culture-Inserts 插件粘附在定制涂层表面上的任何问题。 但是,潮湿的表面会导致泄漏。 因此,请确保您的定制涂层表面完全干燥。


6、需要在 Culture-Insert 插件中播种多少个细胞才能进行细胞迁移实验?

图片

开始迁移实验时,Culture-Insert 插件中的细胞层应融合。 在所有实验中,汇合细胞层的密度应尽可能一致。 使用的接种细胞数量取决于您的细胞类型,因此您可以在 Culture-Insert 2 Well 说明书中找到推荐的范围和详细方案。 


7、为什么移除 ibidi Culture-Insert 插件后细胞有时会从盖玻片上脱落?


以下是解释细胞脱离的一些可能原因:


• 细胞密度太高。 --> 播种更少的细胞(细胞层应在 24 小时后生长至 100% 融合,但不能过度生长)。有关伤口愈合试验的详细方案,请参阅:伤口愈合/细胞划痕实验新方法-如何划出笔直均一的划痕(这是个链接2020-12-10发布的公众号)


• 细胞正在挨饿。 --> 增加每个插入孔的培养基体积,或在细胞生长期间更换培养基。


• 在极少数情况下,细胞类型不能很好地粘附在 ibiTreat 表面。 --> 首先,覆盖盖玻片表面以促进细胞附着。然后,在插入 ibidi Culture-Insert 插件之前让涂层干燥。


以下是使用带有涂层的 ibidi Culture-Inserts 插件以促进细胞粘附的一些额外提示:


• 我们强烈建议提前测试移除ibidi Culture-Insert 插件是否会破坏迁移间隙中的涂层。这可以通过使用针对涂层蛋白的荧光标记抗体进行分析。如果迁移间隙区域中涂层的荧光信号与开放孔中的一样均匀和强烈,则可以假设在插入物移除后是保持完好的。经过几次成功的测试后进行实际实验通常是安全的。


• 如果去除插入物破坏了大部分涂层,则仅涂覆插件的孔,然后接种细胞。取出插件后,通过向培养基中添加低浓度涂层来填充间隙并孵育约 30 分钟。之后,用普通介质替换涂层溶液并继续进行迁移实验。

7的图片


8、当 Culture-Insert变干燥时,包被蛋白会失去活性吗?


这主要取决于与 Culture-Insert 插件一起使用的蛋白质类型。 使用层粘连蛋白的人通常更喜欢在涂层和细胞接种之间保持水分。 根据我们的经验,当纤连蛋白和胶原蛋白 IV 干燥时,我们没有发现对细胞迁移速度有任何影响。 


9、有没有办法用悬液细胞进行伤口愈合实验,或者该实验仅适用于贴壁细胞?


目前,使用 Culture-Insert插件的伤口愈合实验只能用于贴壁细胞。 然而,单个细胞的迁移研究可以在 µ-Slide 趋化性中通过将细胞嵌入到3D基质(例如,I 型胶原蛋白凝胶)中进行。 


10、是什么使 Culture-Inserts插件在细胞接种过程中不会泄漏?


Culture-Insert 插件由硅胶材料制成。 上部是粗料,下部是非常柔软的材料,在按下 Culture-Insert 插件后会固定在表面上。 正确插入时是不会有任何泄漏的。 


11、该如何存储 Culture-Inserts插件?


请在室温下储存 Culture-Inserts。 打开过的产品应储存在无菌容器中。 


12、有时很难在 Culture-Insert 插件中看到细胞层的汇合。 您有什么建议?


当使用相差显微镜和小孔时,例如 Culture-Insert 插件或 96 孔板,空气-水界面之间的弯月面会导致表面强烈弯曲。 这会破坏除孔中心以外的任何地方的相位对比效应。


一种解决方案是用细胞培养基完全均匀地填充 Culture-Insert 的两个孔。 通过这样做,您可以在孔上方的介质和空气之间创建一个平面。 请记住,这可能会导致两孔之间的交叉污染。


13、有时,细胞倾向于聚集在 ibidi Culture-Insert插件的边缘。 怎样才能避免这种情况?


当细胞在 Culture-Insert插件中生长到非常高的密度时,会观察到了这种情况。 为了减少细胞团块,您应该在实验开始时使用较低的细胞密度。 然而,有时细胞会粘在与细胞相容的硅胶上。 在这种情况下,我们建议较少孵育时间和/或细胞数量。 


14、Culture-Insert 如何在不造成细胞损伤的情况下模拟生理伤口?

图片


使用体外实验时,很难以可重复的方式模拟生理伤口。 当然,来自死细胞的碎片可能在与伤口愈合相关的迁移中发挥作用。 使用 Culture-Insert插件的 ibidi 伤口愈合实验提供了可重复的、无损伤的细胞贴片。


在体内,各种其他参数对伤口愈合的影响更大,例如不同细胞类型的相互作用。 使用 Culture-Insert插件的体外 ibidi 伤口愈合实验将迁移速度与所有这些其他影响分开,提供了一个客观且可重复的实验环境。


15、用Culture-Insert插件产生间隙时细胞是否会受损?


Culture-Insert 插件将细胞彼此分离,而不会产生传统意义上的伤口(例如,在划痕实验期间)。 目的是在不产生大量受伤细胞的情况下产生间隙,然后研究间隙闭合。该技术使用户能够将细胞的迁移行为与细胞损伤区分开来。 


16、 Culture-Inserts 插件能否用于蛋白质涂层表面? 拔出 Culture-Insert 插件会干扰涂层吗?


一般来说,只要涂层干燥,Culture-Insert 产检可以放置在涂层表面上。 请注意,插件不会黏附在潮湿的表面上。


但是,我们强烈建议您提前测试插件移除是否会破坏迁移间隙中的涂层。 您可以使用针对涂层蛋白的荧光标记抗体来分析这一点。 如果迁移间隙区域的涂层发出的荧光信号与开放孔中的一样均匀和强烈,那么您可以假设在移除插件后涂层是保持完好的。 经过几次成功的测试后进行实际实验通常是安全的。

图片

2022-05-25 17:20:25 248 0
一般做细胞侵袭转移实验研究,细胞凋亡率不能超过百分之多少
 
2016-04-13 07:55:22 424 1
JAMA热点 | 肿瘤免疫微环境分析方案助力PD-1/PD-L1LX预测

      近年来肿瘤免疫ZL取得了一系列突破性成果,成为继肿瘤手术ZL、放化疗及靶向ZL之外的革命性ZL手段,特别是基于PD-1、CTLA-4等免疫检查点YZ剂的ZL方案表现尤为突出。即便如此,肿瘤的免疫ZL仍面临巨大挑战,如LX不确定性、总体有效率低、耐药抵抗及检测生物标志物缺乏等都制约了对患者的jing准ZL。

 

      大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将会是突破免疫ZL障碍的关键所在,独特的Phenoptics分析方案可以wan美的解决这一难题。该方案可以实现对肿瘤样本内多达9种生物标志物的原位标记和描绘,同时实现多种生物标志物的联合分析及空间分布分析,从而实现生物学数据的深度挖掘,为肿瘤jing准诊疗提供重要依据。   

接下来跟随小编一起来看几篇发表在杂志的相关研究论文,一探究竟吧!

1、JAMA Oncology

      2019年7月18日来自美国约翰霍普金斯大学、耶鲁大学、范德堡大学及西北大学等科研单位联合在肿瘤学权威期刊JAMA Oncology(IF 22.4)发布了一项肿瘤学免疫诊疗重要研究成果(Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade A Systematic Review and Meta-analysis),系统阐述了利用Phenoptics免疫标志物mIHC/IF多重免疫组化(即Opal多重免疫组化)分析方案对于肿瘤微环境进行深度分析,其结果对比传统检测手段对于LX预测有着更为突出的优势,可以更好地为肿瘤的诊断和免疫ZL提供可靠依据。

 

文章对比了广泛应用的几种肿瘤学生物标志物检测方案,如传统PD-L1免疫组化检测、TMB肿瘤突变负荷分析、GEP基因表达谱分析及mIHC/IF多重免疫组化检测等方案与临床案例的诊断准确性及免疫ZL应答率进行了深度整合分析。

 

      研究人员通过Meta分析统计了2013年-2018年间公开发表及重大学术会议公布的肿瘤免疫ZL及免疫检查点YZ剂56篇研究案例,包含 10种以上不同类型的肿瘤样本总计8135份的完整临床数据(包括黑色素瘤、肺癌、尿路上皮癌、头颈癌、结肠癌、肝细胞肝癌、宫颈癌、胃癌、默克细胞瘤、肾细胞癌等),系统关联分析了肿瘤ZL应答率和生物标志物的表达水平,根据其比值权重依据敏感性和准确度统计出sROC曲线并分析计算曲线下面积AUC数据进行准确度评估用于判断该检测方案的敏感度和特异度,这两项指标与肿瘤的免疫ZL应答率具有高度相关性。

 

      数据统计分析显示,mIHC/IF多重组化检测方案的数据结果权重分析条件下AUC=0.79显著优于其他分析方案,PD-L1传统免疫组化IHC检测(AUC=0.65,P<0.001),GEP基因表达谱分析(AUC=0.65,P=0.003),TMB肿瘤突变负荷分析(AUC=0.69, P=0.049),非权重分析AUC=0.872依然显著高于其他分析方案的统计数据。而在使用多个分析方案进行多参数联合评估条件下(如综合PD-L1免疫组化和GEP+TMB综合分析),其AUC将提高到0.74,而mIHC/IF免疫微环境综合分析方案AUC仍高于该联合方案(AUC=0.79),说明mIHC/IF多重组化检测方案对于肿瘤的诊断和免疫ZL具有Z佳的预测价值。

 

2、Nature

      近来关于肿瘤微环境分析与免疫ZL相关研究成果接连发表,2019年6月26日Nature发表了巴黎大学Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用Phenoptics组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的jing准ZL。

 

3、Nature Immunology

      2019年7月8日来自美国希望之城癌症ZX的科研人员在Nature Immunology发文同样阐述了Phenoptics肿瘤微环境分析方案在乳腺癌的诊断和ZL方面具有极大的潜力和价值(Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer),可以有效的对乳腺癌病人ZL后的复发风险进行预测,从而为患者的jing准诊疗提供重要的数据支持。

 

4、Nature Communications

      2018年度诺贝尔奖生理学或医学奖得主James Allison教授早在2017年领导的一项研究就应用Phenoptics多重免疫组化方案深度分析了胰 腺癌病例肿瘤组织微环境与临床预后信息具有极高的相关性,该研究成果发表在Nature子刊 Nature Communications (Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer),而相关的研究方案将为肿瘤的免疫ZL提供新的诊疗依据从而更好的给肿瘤患者制定有效的ZL方案。

 

总结:独特的Phenoptics多光谱组织微环境景观分析方案融合了Opal多重免疫组化染色、Vectra多光谱成像和inForm智能组织定量分析技术,可以wan美实现传统肿瘤检测方案难以解决的技术难题,从而更好的实现对于肿瘤患者的jing准诊断和ZL。

网络讲座

讲座时间:

2019年8月27日12:00 PM(北京时间)

讲座题目:

Comprehensive Meta-analysis of Biomarker Technologies for Predictive Response of PD-1/PD-L1 Checkpoint Therapies

主讲人:

霍普金斯大学 Steve Lu

Akoya Biosciences Cliff Hoyt

内容简介:

详细分享Phenoptics分析方案的特点和技术优势,包括多种生物标记技术预测PD-1/PD-L1免疫ZL的预测指标分析,免疫细胞亚群定量蛋白检测的重要性以及疾病状态下细胞空间分布差异比较与应用,用于稳定且高通量临床研究的多重免疫荧光方法的Z新进展等内容。

会议地址:

https://www.labroots.com/ms/webinar/akoya-biosciences-series-comprehensive-metaanalysis-biomarker-technologies-predictive-response-pd-1

参考文献

1. Wang L, Simons D L, Lu X, et al. Connecting blood and intratumoral T reg cell activity in predicting future relapse in breast cancer[J]. Nature immunology, 2019: 1.

2. Lu S, Stein J E, Rimm D L, et al. Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis[J]. JAMA oncology, 2019.

3. Carstens J L, De Sampaio P C, Yang D, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer[J]. Nature communications, 2017, 8: 15095.

4. Mascaux C, Angelova M, Vasaturo A, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis[J]. Nature, 2019: 1.

5. Soo R A, Lim J S Y, Asuncion B R, et al. Determinants of variability of five programmed death ligand-1 immunohistochemistry assays in non-small cell lung cancer samples[J]. Oncotarget, 2018, 9(6): 6841.

关于珀金埃尔默:

珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。

了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn

 


2019-08-02 16:51:38 446 0
肿瘤病人化疗的PAC,CC,PC方案各表示什么意思?
 
2012-10-30 13:40:27 584 1
蛋白质提取分离纯化鉴定的实验方案
 
2013-06-06 01:09:08 562 2
锂离子电池专用铝塑复合膜检测方案

锂离子电池作为一款应用较广泛的可充电电池,自研发到应用至今已经有二十多年历史。锂离子电池是由正极、负极、隔膜、电解液、集流体以及外包装壳体组成。锂离子电池有效成分的化学性质都非常活泼,置于空气中极容易着火甚至爆开,因而锂离子电池的包装壳体应具有一定的耐腐蚀性及非常优良的阻隔性,目前常用的包装主要有钢壳、铝壳和高分子铝塑膜。采用铝塑复合膜对电池进行包装,具有重量轻等优点,能够大幅度提升电池的比能量。并且铝塑膜包装膜具有很大的柔软性,可以有效的降低电池的内压,不会出现爆开危险。锂离子电池用铝塑复合膜是一种以铝箔为芯层,一侧复合有热封层,另一侧复合有保护层,用于锂离子电池,电容器外封装的多层复合材料。

目前世界各国都尚无关于锂离子电池用铝塑复合膜的国家标准或行业标准。《锂离子电池用复合膜》团体标准由中国化学与物理电源行业协会牵头,国内生产厂家共同组成工作组,共同编制并发布。

锂离子电池专用铝塑复合膜的行业标准主要包括以下这些:

GB/T191包装储运图示标志

GB/T2828.1-2012计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划

GB/T2918朔料试样状态调节和试验的标准环境

GB/T66721朔料薄膜与薄片厚度的测定机械测量法

GB/T6673塑料薄膜和薄片长度和宽度的测定

GB/T8808-1988软质复合塑料材料剥离试验方法

GB/T10004-2008包装用塑料复合膜、袋干法复合、挤出复合

GB/T10006塑料薄膜和薄片摩擦系数测定方法GB/T14216塑料膜和片润湿张力的测定

GB/T26125电子电气产品六种限用物质(铅、汞、镉、六价铬、多溴联苯和多溴二苯醚)的测定

GB/T26572-2011由子白气产品中限用物质的限量要求

QB/T2358-1998朔料薄膜包装袋执合强度试验方法

本文依据《锂离子电池用复合膜》团体标准要求及相关标准总结出关于锂离子电池用铝塑复合膜各种性能的测试方案。

一、(1)拉伸性能

裁取长度大于150mm、宽度为15mm的长形条样品,采用精度为0.5级的电子拉力试验机进行实验,家具建的初始距离为100mm,以300mm/min的速度拉伸,记录大力值和断裂伸长率。

(2)剥离力

按GB/T8808-1988的规定进行,试样宽度为15mm的长形条,试验速度为100mm/min。剥离力反映的是界面粘结强度,剥离力大小对材料之间是否出现分层有直接影响。

(3)热封强度

裁取宽度为15mm的长形条。按QB/T2358-1998的规定进行测试,试验速度为100mm/min。热封强度是铝塑膜的一个很重要的指标,直接反映封口的密着性和抵抗封袋内部压力对封口破坏的能力,该项指标随热封条件的不同而结果差异较大,需供需双方协商,标注中给出的是一个确保安全封装的要求。

(4)穿刺性能

按GB/T10004-2008中的6.6.13的规定进行。穿刺针头由热封层一侧开始刺入。穿刺强度反映铝塑膜内层抵抗穿刺的能力,电池制备过程抽真空时,电芯中存在的毛刺对内层有刺穿的行为,因而检测铝塑膜的穿刺强度很有必要。

(5)耐电解液性能

本标准中,铝塑复合膜的耐电解液性能主要包括两块:铝塑复合膜浸泡电解液后的热封强度及热封层与铝层的剥离力。

A、铝层与热封层的剥离力

将铝塑膜切成15mm×10mm的试样,并将样品在85℃的电解液中浸泡24小时,取出自然冷却至常温后擦拭干净,检查样品外观并按照GB/T8808-1988规定的方法测试剥离力,测试速度为100mm/min。铝塑膜内层直接与电池中的电解液接触,通过比常规使用条件更苛刻的将锂电池用铝塑复合膜在高温下浸泡电解液检验其长期可靠性。

B、封口的热封强度

将铝塑膜封装制成60mm×80mm的样袋,并注入3mL电解液,经热封闭合。将样袋在温度为85℃±2℃的环境中保持24小时后取出,自然冷却至常温。先裁去一个热封边后倒出电解液,再裁去其余热封边,然后将膜面残留的电解液擦拭干净,后重新热封。沿封口垂直方向取宽度为15mm的样品,按QB/T2358-1998规定的方法测试(测试速度为100mm/min)。该项测试模拟软包锂离子电池生产过程中的二封工序,反映电解液对二封的影响,具有很强的现实意义。

锂离子电池专用铝塑复合膜的拉伸性能、剥离力、热封强度、穿刺性能、铝层与热封层的剥离力、封口的热封强度等相关项目均可采用赛成仪器生产的XLW-H 智能电子拉力试验机来测试!它应用于对各种材料进行拉伸,压缩,撕裂,剥离,形变等力学性能项目的测试,适用于塑料薄膜、薄片、复合膜、纸张、橡胶、纺织、医药包装等领域的物理机械性能测试,是各材料生产厂家,研究机构进行物性试验、研究及质量控制必选的工具。

二、冲压性能

采用标准中附录A要求的模具,将规格为130mm×240mm的样品在0.15MPa-0.3MPa的压力下进行冲压,检查样品的外观,并用精度不低于0.1mm的两句测量冲压高层度。铝塑复合膜冲深高层度越大,表明同样面积的铝塑膜可以容纳更多的内容物,其利用率越高,因而是甄别铝塑膜性能的一个重要指标。

三、摩擦系数

按GB10006的规定进行,铝塑复合膜的摩擦系数包括保护层-保护层和热封层-热封层的摩擦系数,一般铝塑复合膜多采用补偿性冲压的方式成型,摩擦系数相对低,对补偿性有利,并且可纺织薄膜间的相互粘连现象。因此,需要将摩擦系数限定在一定的范围内。

MXD-02 摩擦系数仪是依据GB10006标准生产的,专业适用于复合膜动静摩擦系数的测试,另外还可以满足ISO/ASTM等多种标准。

四、材料厚度决定了材料拉伸,剥离等各种物理性能,所以锂离子电池专用铝塑复合膜厚度的检验也是生产厂家所关注的。依据国家标准《GB/T6672-2001塑料薄膜和薄片厚度测定_机械测量法》此项检测可选用CHY-CA 测厚仪,专业适用于量程范围内的塑料薄膜、薄片、电池隔膜、纸张等各种材料厚度的较好测量,精度高,完全符合较新测试标准。

除了以上主要指标以外,还需要根据对应标准对锂离子电池用铝塑复合膜外观、耐热、耐湿等性能进行检验

济南赛成仪器一直致力于为大部分国家客户提供高性价比的整体解决方案,公司的核心宗旨就是持续创新,打造高精尖检测仪器,满足行业内不同客户的品控需求,期待与行业内的企事业单位增进交流和合作。

赛成仪器,赛出品质,成就未来!


2022-07-14 16:56:50 197 0
牙膏中重金属检测的微波消解方案

2020年4月国家市场监督管理总局发布了GB/T 38789-2020 《口腔清洁护理用品 牙膏中10种元素含量的测定 电感耦合等离子体质谱法》,并于2020年11月1日起实施。该标准明确了牙膏中As等10种元素的测定方法及检出限,前处理方法选用的正是高效便捷的微波消解法。

事实上,国家一直将牙膏参照有关普通化妆品的规定进行管理,以保障消费者权益,也保证牙膏产品健康有序发展。2015年,原国家食品药品监督管理总局关于化妆品生产许可有关事项的公告中要求牙膏类产品的生产许可工作按照化妆品执行。2018年正式实施的牙膏标准 GB/T 8372-2017 《牙膏》中要求产品的微生物和重金属均需按照《化妆品安全技术规范》规定执行。2021年1月1日实施的《化妆品监督管理条例》第七十七条规定同样指出“牙膏参照有关普通化妆品的规定进行管理”。

 

为应对牙膏中多元素测定,保障牙膏产品质量,屹尧科技M系列微波消解仪采用了高效、快速、稳定的前处理方法。参照GB/T 38789-2020标准对牙膏进行微波消解前处理,后端使用ICPMS分析测定牙膏中的金属元素含量。实验过程高效快速,结果稳定准确。

2022-01-24 09:49:53 149 0
20版药典33种禁用农药检测方案

20版药典33种禁用农药检测方案

2020年版药典明确列出药材及饮片(植物类)33种禁用农药,并且要求不得超过定量限。检测方法共有五种方法,分别为:

方法名称 所测农药

第壹法 有机氯类农药残留量测定法 包含9种有机氯和22种有机氯农药两种测定方法

第二法 有机磷类农药残留量测定法 包含12种有机磷农药

第三法 拟除虫菊酯类农药残留量测定法 包含3种拟除虫菊酯类农药

第四法 农药多残留量测定法

第五法 药材及饮片(植物类)中禁用农药多残留测定法 包含33种禁用农药

其中第五法,是针对药材及饮片(植物类)中33种禁用农药的检测方法。此方法前处理又有三种方法:直接提取法,快速样品处理法(QuEChERS),固相萃取法。而固相萃取法又分三种处理方式。

为了方便的让大家理解并应用药典中的各检测方法,中检维康推出了针对33中禁用农药检测方法的专用产品。

样品提取

取供试品粉末(过三号筛)3g,精密称定,置于50 mL离心管中,加入 1%冰醋酸水溶液15mL,涡旋使药粉充分浸润,放置30分钟,精密加入乙腈15 mL,涡旋使混匀,置于振荡器上剧烈振荡(500次/分)5分钟,加入提取包(货号:QP6150S),立即摇散,置于振荡器(500次/分)振荡3分钟,于冰水浴中冷却10 分钟,离心(4000转/分)5分钟,取上清液备用。

样品净化       

取上述上清液9mL,加入到净化管(货号:Q015050)中,涡旋使样品充分混匀,置于振荡器(500次/分)振荡5分钟使净化完全,离心(4000转/分)5分钟,精密吸取上清液5ml,置氮吹仪上40℃浓缩至约0.4mL,用乙腈稀释定容至1.0 mL,涡旋混匀,0.22 μm尼龙针式过滤器滤过,取滤液,即得。                   


2021-12-27 21:08:53 397 0
中药材中黄曲霉毒素快速检测方案

现行使用的2020年版药典中,对于黄曲霉毒素的检测有明确要求,现检测品种由2015年药典要求的19种中药材增加到25种中药材原料,及用这些原料制成的饮片、丸剂等成品药,现有2020年版药典中对于黄曲霉的检测方法有三种,第一种是高效液相色谱法+光化学衍生法;第二种是高效液相色谱-串联质谱法;第三种是酶联免疫法。现在大部分药检所机构及中药企业实验室基本采用第一种方法居多,不管是从检测复杂程度、设备成本、耗材成本多方面考虑,第一法都有一定的优势。我们公司可以提供第一法的解决方案,并给国内100+中药企业提供过解决方案,如需要解决方案的可与我们沟通联系。

现行药典方法都是化验室用来定量检测的,从样品前处理到得到结果,最快也需要3小时以上,而这是样品已经入库,对于黄曲霉风险比较高的样品,例如酸枣仁、柏子仁、远志等中药材,如果已经入库后,且黄曲霉超标,该样品将无法进入到生产环节,这样对于企业的经济损失将是非常大的,那就急需要一种能现场快速检测黄曲霉的设备,并且结果有保证的检测方法。

中检维康生物公司提供一套现场快速检测中药材黄曲霉的方案,基于胶体金免疫层析快速检测技术(GICA)通过图像分析技术定量快速检测中药材中黄曲霉毒素B1、黄曲霉毒素总量、脱氧雪腐镰刀菌烯醇、玉米赤霉烯酮,以及赭曲霉毒素A等真菌毒素的含量。


2021-11-30 19:15:19 322 0
药品包装材料质量控制与检测方案

近年来,随着人民生活水平的提高,健康保障体系的改变和城镇居民健康保险的扩大,对中国医药行业产生了巨大的推动作用。作为医药产业化发展的重要组成部分,医药包装越来越受到国家质检系统以及众多药品生产企业的重视。济南赛成电子科技有限公司成立以来为食品行业、药品行业、胶粘制品行业、质检机构、科研院校、日化行业提供优质高等的检测仪器和一体质量控制方案。


一、药包材的透气性能、透湿性能检测

对于药品来讲,氧化和水解是药物分解失效的重要因素,会引起药物的不稳定性。许多药品都容易被氧化,发生变色、异臭、变质失效,有些还会产生毒性。水分是化学反应的媒介, 药品吸湿后可引起结块、潮解、稀释、发霉、水解、氧化等变化,致使某些药物在调配时产生困难或难以掌握准确的剂量,甚至使某些药物的药效降低或产生反应性、毒性,因此药品包装对阻隔性的要求很高。为此,国家食品药品监督管理局颁布的《直接接触药品的包装材料和容器标准汇编》中对于气体透过量测定方法与水蒸汽透过量的测定方法进行了相应规定,每个检测项目都有两种测试方法。规定方法如下:

1、 气体透过量测定方法:第 (分隔符)一方法压差法,第二法等压法

2、水蒸汽透过量测定法:第 (分隔符)一法 杯式法(称量法),第二法电解法。

 

GPT-201H压差法气体渗透仪基于压差法的测试原理,是一款专业用于薄膜试样的气体透过率测试仪,适用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片在各种温度下的气体透过量和气体透过系数的测定。

 

WPT-301 水蒸气透过率测试仪基于杯式法测试原理,是一款专业用于薄膜试样的水蒸气透过率测试仪,适用于塑料薄膜、复合膜等膜、片状材料与健康、建材领域等多种材料的水蒸气透过率的测定。通过水蒸气透过率的测定,达到控制与调节材料的技术指标,满足产品应用的不同需求。


二、药品包装热封强度检测

为了达到包装目的,药品包装封口必需要有一定的强度才能够承受内装物及外在压力的作用,保证在流通过程中不开裂破损。要解决此问题需借助“热封试验仪”与“智能电子拉力试验机”来进行检测。

 

HST-H3热封试验仪适用于测试塑料薄膜,软包装复合膜等材料的热封温度、热封时间及热封压力等参数较好测定。


三、药包材抗拉强度检测

抗拉强度是指材料在拉断前承受大应力值. 通过检测能够有效解决因为所选用的包装材料机械强度不够,而在受到外力作用下产生的包装破损与断裂。需采用智能电子拉力试验机进行检测。

 

XLW-H智能电子拉力试验机是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机,可以用于拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拨开力、抗压等性能测试。


四、药品包装成品的密封性检测

密封性能也是药品包装检验的一项重要指标。药品包装的密封性测试就是对整个包装的阻隔细菌层进行测试,比如泡罩包装或泡罩胶囊等的其他药品包装对于成品的泄漏试验以及密封性试验。密封性不好是造成日后泄漏的主要原因。一般采用密封性能试验仪器来进行检测。

 

MFY-CM密封试验仪专业适用于产品的密封试验,通过试验可以有效地比较和评价软包装件的密封工艺及密封性能,是用于对食品、塑料软包装、湿巾、制药、日化等行业理想的密封试验检测仪器。

MK-1000 真空衰减法密封性测试仪,采用非破坏性测试方法,专业适用于安瓿瓶、西林瓶、注射剂瓶、冻干粉针剂瓶和预灌封包装样品的微泄漏检测。

 

LSSD-01泄漏与密封强度测试仪,正压法测试原理,适用于各种热封、粘接工艺形成的软包装件、无菌包装件等各封边的封口强度、热封质量以及整袋胀破压力、密封泄漏性能的量化测定。


五、输液袋膜材的厚度检测

药包膜材厚度是否均匀一致,是检测薄膜各项性能的基础。薄膜厚度不均匀,不但会影响到薄膜各处的拉伸强度、阻隔性等,更会影响薄膜的后续加工。

 

CHY-CA测厚仪采用机械接触式测量方式,严格符合标准要求,有效保证了测试的规范性和准确性。专业适用于量程范围内的塑料薄膜、薄片、隔膜、纸张、箔片、硅片等各种材料的厚度较好测量。

以上几项输液袋及其膜材的检测指标在实际生产中,对调整生产工艺,提高产品质量至关重要。通过相应的试验仪器可以实现对质量的监控,确保产品的质量合格。

济南赛成仪器一直致力于为大部分国家客户提供高性价比的整体解决方案,公司的核心宗旨就是持续创新,打造高精尖检测仪器,满足行业内不同客户的品控需求,期待与行业内的企事业单位增进交流和合作。

赛成仪器,赛出品质,成就未来!



2021-11-08 16:43:06 603 0

9月突出贡献榜

推荐主页

最新话题